Tianshi Xu , Vassilis Kalantzis , Ruipeng Li , Yuanzhe Xi , Geoffrey Dillon , Yousef Saad
{"title":"parGeMSLR: A parallel multilevel Schur complement low-rank preconditioning and solution package for general sparse matrices","authors":"Tianshi Xu , Vassilis Kalantzis , Ruipeng Li , Yuanzhe Xi , Geoffrey Dillon , Yousef Saad","doi":"10.1016/j.parco.2022.102956","DOIUrl":null,"url":null,"abstract":"<div><p>This paper discusses <span>parGeMSLR</span><span><span>, a C++/MPI software library for the solution of sparse systems of linear algebraic equations via preconditioned </span>Krylov subspace methods<span> in distributed-memory computing environments. The preconditioner implemented in </span></span><span>parGeMSLR</span><span> is based on algebraic domain decomposition and partitions the symmetrized adjacency graph recursively into several non-overlapping partitions via a </span><span><math><mi>p</mi></math></span>-way vertex separator, where <span><math><mi>p</mi></math></span><span> is an integer multiple of the total number of MPI processes. From a numerical perspective, </span><span>parGeMSLR</span><span><span> builds a Schur complement approximate inverse preconditioner as the sum between the </span>matrix inverse<span> of the interface coupling matrix and a low-rank correction term. To reduce the cost associated with the computation of the approximate inverse matrices, </span></span><span>parGeMSLR</span> exploits a multilevel partitioning of the algebraic domain. The <span>parGeMSLR</span> library is implemented on top of the Message Passing Interface and can solve both real and complex linear systems. Furthermore, <span>parGeMSLR</span><span> can take advantage of hybrid computing environments with in-node access to one or more Graphics Processing Units. Finally, the parallel efficiency (weak and strong scaling) of </span><span>parGeMSLR</span><span> is demonstrated on a few model problems arising from discretizations<span> of 3D Partial Differential Equations.</span></span></p></div>","PeriodicalId":54642,"journal":{"name":"Parallel Computing","volume":"113 ","pages":"Article 102956"},"PeriodicalIF":2.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167819122000497","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper discusses parGeMSLR, a C++/MPI software library for the solution of sparse systems of linear algebraic equations via preconditioned Krylov subspace methods in distributed-memory computing environments. The preconditioner implemented in parGeMSLR is based on algebraic domain decomposition and partitions the symmetrized adjacency graph recursively into several non-overlapping partitions via a -way vertex separator, where is an integer multiple of the total number of MPI processes. From a numerical perspective, parGeMSLR builds a Schur complement approximate inverse preconditioner as the sum between the matrix inverse of the interface coupling matrix and a low-rank correction term. To reduce the cost associated with the computation of the approximate inverse matrices, parGeMSLR exploits a multilevel partitioning of the algebraic domain. The parGeMSLR library is implemented on top of the Message Passing Interface and can solve both real and complex linear systems. Furthermore, parGeMSLR can take advantage of hybrid computing environments with in-node access to one or more Graphics Processing Units. Finally, the parallel efficiency (weak and strong scaling) of parGeMSLR is demonstrated on a few model problems arising from discretizations of 3D Partial Differential Equations.
期刊介绍:
Parallel Computing is an international journal presenting the practical use of parallel computer systems, including high performance architecture, system software, programming systems and tools, and applications. Within this context the journal covers all aspects of high-end parallel computing from single homogeneous or heterogenous computing nodes to large-scale multi-node systems.
Parallel Computing features original research work and review articles as well as novel or illustrative accounts of application experience with (and techniques for) the use of parallel computers. We also welcome studies reproducing prior publications that either confirm or disprove prior published results.
Particular technical areas of interest include, but are not limited to:
-System software for parallel computer systems including programming languages (new languages as well as compilation techniques), operating systems (including middleware), and resource management (scheduling and load-balancing).
-Enabling software including debuggers, performance tools, and system and numeric libraries.
-General hardware (architecture) concepts, new technologies enabling the realization of such new concepts, and details of commercially available systems
-Software engineering and productivity as it relates to parallel computing
-Applications (including scientific computing, deep learning, machine learning) or tool case studies demonstrating novel ways to achieve parallelism
-Performance measurement results on state-of-the-art systems
-Approaches to effectively utilize large-scale parallel computing including new algorithms or algorithm analysis with demonstrated relevance to real applications using existing or next generation parallel computer architectures.
-Parallel I/O systems both hardware and software
-Networking technology for support of high-speed computing demonstrating the impact of high-speed computation on parallel applications