Geometrical and electrostatic densities in a highly sparse as-electrospun polystyrene microfiber mat

IF 2.2 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Letters: X Pub Date : 2023-10-20 DOI:10.1016/j.mlblux.2023.100221
Yuya Ishii
{"title":"Geometrical and electrostatic densities in a highly sparse as-electrospun polystyrene microfiber mat","authors":"Yuya Ishii","doi":"10.1016/j.mlblux.2023.100221","DOIUrl":null,"url":null,"abstract":"<div><p>Electromechanically active nano/microfibers are promising components of sensors and actuators; however, piezoelectric polymers are normally expensive. To address this issue, this study examined the geometrical and electrostatic densities of an inexpensive highly sparse as-electrospun atactic polystyrene microfiber mat. The densities of porous individual fibers and the highly sparse fiber mat were experimentally determined to be 0.88 and 0.051 g cm<sup>−3</sup>, respectively, with corresponding material filling ratios of 80 % and 4.7 %, respectively. A high theoretical surface charge density of approximately 1.4 × 10<sup>−3</sup> C m<sup>−2</sup> was determined for the fiber mat after excluding air spaces in both individual fibers and the mat. These findings provide a pathway to outstanding electrets that are ultra-lightweight and have high charge densities.</p></div>","PeriodicalId":18245,"journal":{"name":"Materials Letters: X","volume":"20 ","pages":"Article 100221"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590150823000418/pdfft?md5=a33de31140e295be64d499e6709930d3&pid=1-s2.0-S2590150823000418-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Letters: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590150823000418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electromechanically active nano/microfibers are promising components of sensors and actuators; however, piezoelectric polymers are normally expensive. To address this issue, this study examined the geometrical and electrostatic densities of an inexpensive highly sparse as-electrospun atactic polystyrene microfiber mat. The densities of porous individual fibers and the highly sparse fiber mat were experimentally determined to be 0.88 and 0.051 g cm−3, respectively, with corresponding material filling ratios of 80 % and 4.7 %, respectively. A high theoretical surface charge density of approximately 1.4 × 10−3 C m−2 was determined for the fiber mat after excluding air spaces in both individual fibers and the mat. These findings provide a pathway to outstanding electrets that are ultra-lightweight and have high charge densities.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高度稀疏的静电纺聚苯乙烯微纤维垫的几何和静电密度
机电活性纳米/微纤维是传感器和执行器的重要组成部分;然而,压电聚合物通常是昂贵的。为了解决这一问题,本研究检测了廉价的高度稀疏的静电纺无规聚苯乙烯微纤维垫的几何密度和静电密度。实验确定多孔单个纤维和高度稀疏纤维垫的密度分别为0.88和0.051 g cm - 3,相应的材料填充率分别为80%和4.7%。在排除单个纤维和纤维垫中的空气空间后,确定了纤维垫的高理论表面电荷密度约为1.4 × 10−3 cm m−2。这些发现为超轻和高电荷密度的优秀驻极体提供了途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
50
审稿时长
114 days
期刊最新文献
Slowing the crystallization speed to prepare high-efficiency flexible tin-based perovskite solar cells Large-area solution-processable black phosphorus for electronic application Composites with aligned and plasma-surface-modified graphene nanoplatelets and high dielectric constants CVD grown bi-layer MoS2 as SERS substrate: Nanomolar detection of R6G and temperature response Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1