{"title":"A New Crosslinking Assay to Study Guanine Nucleotide Binding in the Gtr Heterodimer of <i>S. cerevisiae</i>.","authors":"Dylan D Doxsey, Kristen Veinotte, Kuang Shen","doi":"10.1080/21541248.2022.2141019","DOIUrl":null,"url":null,"abstract":"<p><p>The mechanistic target of rapamycin (mTOR) complex is responsible for coordinating nutrient availability with eukaryotic cell growth. Amino acid signals are transmitted towards mTOR via the Rag/Gtr heterodimers. Due to the obligatory heterodimeric architecture of the Rag/Gtr GTPases, investigating their biochemical properties has been challenging. Here, we describe an updated assay that allows us to probe the guanine nucleotide-binding affinity and kinetics to the Gtr heterodimers in <i>Saccharomyces cerevisiae</i>. We first identified the structural element that Gtr2p lacks to enable crosslinking. By using a sequence conservation-based mutation, we restored the crosslinking between Gtr2p and the bound nucleotides. Using this construct, we determined the nucleotide-binding affinities of the Gtr heterodimer, and found that it operates under a different form of intersubunit communication than human Rag GTPases. Our study defines the evolutionary divergence of the Gtr/Rag-mTOR axis of nutrient sensing.</p>","PeriodicalId":22139,"journal":{"name":"Small GTPases","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e4/6b/KSGT_13_2141019.PMC9639563.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small GTPases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21541248.2022.2141019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 1
Abstract
The mechanistic target of rapamycin (mTOR) complex is responsible for coordinating nutrient availability with eukaryotic cell growth. Amino acid signals are transmitted towards mTOR via the Rag/Gtr heterodimers. Due to the obligatory heterodimeric architecture of the Rag/Gtr GTPases, investigating their biochemical properties has been challenging. Here, we describe an updated assay that allows us to probe the guanine nucleotide-binding affinity and kinetics to the Gtr heterodimers in Saccharomyces cerevisiae. We first identified the structural element that Gtr2p lacks to enable crosslinking. By using a sequence conservation-based mutation, we restored the crosslinking between Gtr2p and the bound nucleotides. Using this construct, we determined the nucleotide-binding affinities of the Gtr heterodimer, and found that it operates under a different form of intersubunit communication than human Rag GTPases. Our study defines the evolutionary divergence of the Gtr/Rag-mTOR axis of nutrient sensing.