{"title":"X-linked hyper-immunoglobulin M syndrome harboring a novel CD40-ligand gene mutation: a case report.","authors":"Rahul Ramachandran, Yamini Krishnan, Parminder Singh, Ashok Kumar, Abhishek Mohanty","doi":"10.1007/s00251-022-01289-y","DOIUrl":null,"url":null,"abstract":"<p><p>The X-linked hyper-IgM syndrome (X-HIGM1) is a rare primary immunodeficiency disorder (PID) caused by mutations in the gene encoding the CD154 protein, also known as CD40 ligand (CD40LG). X-HIGM1 is characterized by normal or elevated serum levels of IgM in association with decreased levels of IgG, IgA, and IgE. The CD40LG protein expressed on activated T cells interacts with its receptor protein, CD40, on B lymphocytes and dendritic cells. Mutations in the CD40LG gene lead to the production of an abnormal CD40L protein that fails to attach to its receptor, CD40 on B cells resulting in failure to produce IgG, IgA, and IgE antibodies. In the present study, we investigated the molecular defects underlying such a PID in a patient presenting with clinical history of pneumonia and acute respiratory distress syndrome (ARDS) at 7 months of age and diagnosed as transient hypogammaglobulinemia with decreased levels of IgG and increased levels of IgM. We have identified a novel and yet to be reported frame shift deletion of a single base pair (c.229delA) in exon 2 (p.Arg77AspfsTer6) of the CD40L gene ensuing the premature truncation of the protein by 6 amino acids by targeted gene sequencing. This frame shift mutation identified as a CD40L variant was found to be pathogenic which was also validated by Sanger sequencing. The in-silico analysis of c.229 del A mutation also predicted the change to be pathological affecting the structure and function of the CD40L (CD40L, CD154) protein and its protein-protein interaction properties.</p>","PeriodicalId":13446,"journal":{"name":"Immunogenetics","volume":"75 2","pages":"191-194"},"PeriodicalIF":2.9000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunogenetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00251-022-01289-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
The X-linked hyper-IgM syndrome (X-HIGM1) is a rare primary immunodeficiency disorder (PID) caused by mutations in the gene encoding the CD154 protein, also known as CD40 ligand (CD40LG). X-HIGM1 is characterized by normal or elevated serum levels of IgM in association with decreased levels of IgG, IgA, and IgE. The CD40LG protein expressed on activated T cells interacts with its receptor protein, CD40, on B lymphocytes and dendritic cells. Mutations in the CD40LG gene lead to the production of an abnormal CD40L protein that fails to attach to its receptor, CD40 on B cells resulting in failure to produce IgG, IgA, and IgE antibodies. In the present study, we investigated the molecular defects underlying such a PID in a patient presenting with clinical history of pneumonia and acute respiratory distress syndrome (ARDS) at 7 months of age and diagnosed as transient hypogammaglobulinemia with decreased levels of IgG and increased levels of IgM. We have identified a novel and yet to be reported frame shift deletion of a single base pair (c.229delA) in exon 2 (p.Arg77AspfsTer6) of the CD40L gene ensuing the premature truncation of the protein by 6 amino acids by targeted gene sequencing. This frame shift mutation identified as a CD40L variant was found to be pathogenic which was also validated by Sanger sequencing. The in-silico analysis of c.229 del A mutation also predicted the change to be pathological affecting the structure and function of the CD40L (CD40L, CD154) protein and its protein-protein interaction properties.
期刊介绍:
Immunogenetics publishes original papers, brief communications, and reviews on research in the following areas: genetics and evolution of the immune system; genetic control of immune response and disease susceptibility; bioinformatics of the immune system; structure of immunologically important molecules; and immunogenetics of reproductive biology, tissue differentiation, and development.