Strip running deviation monitoring and feedback real-time in smart factories based on improved YOLOv5

IF 3.8 3区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Sustainable Computing-Informatics & Systems Pub Date : 2023-10-13 DOI:10.1016/j.suscom.2023.100923
Jun Luo , Gang Wang , Mingliang Zhou , Huayan Pu , Jun Luo
{"title":"Strip running deviation monitoring and feedback real-time in smart factories based on improved YOLOv5","authors":"Jun Luo ,&nbsp;Gang Wang ,&nbsp;Mingliang Zhou ,&nbsp;Huayan Pu ,&nbsp;Jun Luo","doi":"10.1016/j.suscom.2023.100923","DOIUrl":null,"url":null,"abstract":"<div><p>The strip running deviation in steel production can cause significant economic losses by forcing a shutdown of the whole steel production line. However, due to the fast running speed (100–140 m/min) of the strip, it a difficult problem to accurately judge online whether the strip running deviation or not and control its deviation during operation. In this paper, a fast and accurate model for detecting strip running deviation is proposed, this model allows for real-time control of strip operation deviation according to the detection model’s results. In our model, the attention module is used to improve the detection accuracy. The rolling equipment’s pressing force can be real-time controlled to correct the strip running deviation. Compared with the original model, the proposed model in this paper achieves an increase in accuracy of 3 %, and the detection speed can reach 29 FPS, meeting the real-time requirements. This work can provide ideas for applying computer vision in construction of intelligent factories.</p></div>","PeriodicalId":48686,"journal":{"name":"Sustainable Computing-Informatics & Systems","volume":"40 ","pages":"Article 100923"},"PeriodicalIF":3.8000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Computing-Informatics & Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210537923000781","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

The strip running deviation in steel production can cause significant economic losses by forcing a shutdown of the whole steel production line. However, due to the fast running speed (100–140 m/min) of the strip, it a difficult problem to accurately judge online whether the strip running deviation or not and control its deviation during operation. In this paper, a fast and accurate model for detecting strip running deviation is proposed, this model allows for real-time control of strip operation deviation according to the detection model’s results. In our model, the attention module is used to improve the detection accuracy. The rolling equipment’s pressing force can be real-time controlled to correct the strip running deviation. Compared with the original model, the proposed model in this paper achieves an increase in accuracy of 3 %, and the detection speed can reach 29 FPS, meeting the real-time requirements. This work can provide ideas for applying computer vision in construction of intelligent factories.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于改进YOLOv5的智能工厂带钢运行偏差实时监测与反馈
在钢铁生产中,带钢跑偏会造成重大的经济损失,甚至导致整条钢铁生产线停产。但是,由于带钢运行速度快(100-140 m/min),在运行过程中,在线准确判断带钢是否运行偏差并控制其偏差是一个难题。本文提出了一种快速准确的带钢运行偏差检测模型,该模型可以根据检测模型的结果对带钢运行偏差进行实时控制。在我们的模型中,注意模块用于提高检测精度。可实时控制轧制设备的压紧力,纠正带钢运行偏差。与原模型相比,本文提出的模型精度提高了3%,检测速度可达29 FPS,满足实时性要求。本研究为计算机视觉在智能工厂建设中的应用提供了思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Sustainable Computing-Informatics & Systems
Sustainable Computing-Informatics & Systems COMPUTER SCIENCE, HARDWARE & ARCHITECTUREC-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
10.70
自引率
4.40%
发文量
142
期刊介绍: Sustainable computing is a rapidly expanding research area spanning the fields of computer science and engineering, electrical engineering as well as other engineering disciplines. The aim of Sustainable Computing: Informatics and Systems (SUSCOM) is to publish the myriad research findings related to energy-aware and thermal-aware management of computing resource. Equally important is a spectrum of related research issues such as applications of computing that can have ecological and societal impacts. SUSCOM publishes original and timely research papers and survey articles in current areas of power, energy, temperature, and environment related research areas of current importance to readers. SUSCOM has an editorial board comprising prominent researchers from around the world and selects competitively evaluated peer-reviewed papers.
期刊最新文献
Analysing the radiation reliability, performance and energy consumption of low-power SoC through heterogeneous parallelism Nearest data processing in GPU An optimized deep learning model for estimating load variation type in power quality disturbances An one-time pad cryptographic algorithm with Huffman Source Coding based energy aware sensor node design A mMSA-FOFPID controller for AGC of multi-area power system with multi-type generations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1