It takes guts to learn: machine learning techniques for disease detection from the gut microbiome.

IF 3.4 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Emerging Topics in Life Sciences Pub Date : 2021-12-21 DOI:10.1042/ETLS20210213
Kristen D Curry, Michael G Nute, Todd J Treangen
{"title":"It takes guts to learn: machine learning techniques for disease detection from the gut microbiome.","authors":"Kristen D Curry, Michael G Nute, Todd J Treangen","doi":"10.1042/ETLS20210213","DOIUrl":null,"url":null,"abstract":"<p><p>Associations between the human gut microbiome and expression of host illness have been noted in a variety of conditions ranging from gastrointestinal dysfunctions to neurological deficits. Machine learning (ML) methods have generated promising results for disease prediction from gut metagenomic information for diseases including liver cirrhosis and irritable bowel disease, but have lacked efficacy when predicting other illnesses. Here, we review current ML methods designed for disease classification from microbiome data. We highlight the computational challenges these methods have effectively overcome and discuss the biological components that have been overlooked to offer perspectives on future work in this area.</p>","PeriodicalId":46394,"journal":{"name":"Emerging Topics in Life Sciences","volume":"5 6","pages":"815-827"},"PeriodicalIF":3.4000,"publicationDate":"2021-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d4/22/ETLS-5-815.PMC8786294.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Topics in Life Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1042/ETLS20210213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Associations between the human gut microbiome and expression of host illness have been noted in a variety of conditions ranging from gastrointestinal dysfunctions to neurological deficits. Machine learning (ML) methods have generated promising results for disease prediction from gut metagenomic information for diseases including liver cirrhosis and irritable bowel disease, but have lacked efficacy when predicting other illnesses. Here, we review current ML methods designed for disease classification from microbiome data. We highlight the computational challenges these methods have effectively overcome and discuss the biological components that have been overlooked to offer perspectives on future work in this area.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
学习需要勇气:从肠道微生物组检测疾病的机器学习技术。
人类肠道微生物组与宿主疾病表达之间的关联已在从胃肠道功能障碍到神经系统缺陷等多种疾病中被注意到。机器学习(ML)方法在利用肠道元基因组信息预测疾病(包括肝硬化和肠易激综合症)方面取得了可喜的成果,但在预测其他疾病方面却缺乏有效性。在此,我们回顾了目前利用微生物组数据进行疾病分类的 ML 方法。我们强调了这些方法有效克服的计算挑战,并讨论了被忽视的生物成分,为这一领域未来的工作提供了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
94
期刊最新文献
Bacterial acetate metabolism and its influence on human epithelia. Dinner date: Neisseria gonorrhoeae central carbon metabolism and pathogenesis. The nitric oxide paradox: antimicrobial and inhibitor of antibiotic efficacy. Copper management strategies in obligate bacterial symbionts: balancing cost and benefit. Metalloproteome plasticity - a factor in bacterial pathogen adaptive responses?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1