{"title":"Extreme contact pressure-induced in-situ structural evolution of nanoclusters governing macroscopic superlubricity in a-C:H films","authors":"Qingyuan Yu, Xinchun Chen, Chenhui Zhang, Jisen Tian, Wenli Deng, Peng Huang","doi":"10.1016/j.carbon.2023.118457","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Though hydrogenated amorphous carbon (a-C:H) films can provide </span>macroscale superlubricity states in vacuum, their self-lubricating behaviors are highly dependent on the applied loads. The mechanisms of loss of superlubricity under ultra-low or extremely high contact pressure remain unclear. In this work, the origin of load-sensitive superlubricity of a-C:H films was revealed based on spatially resolved structural analyses of the sliding interfaces. The results highlighted the key role of contact pressure-induced diversified nano-structural evolution of transfer films in controlling superlubricity. To achieve superlubricity, a sufficiently high contact pressure was required to trigger the structural evolution of transfer films from polymer-like disordered bonding network structure towards locally ordered, layered-like </span><em>sp</em><sup>2</sup><span><span> nanoclustering structures. Robust superlubricity can still be maintained under extremely high peak Hertz contact pressure up to 4.87 GPa, which is the highest value reported for macroscopic superlubricity in carbon-based materials. Nevertheless, excessively high contact pressure can cause an increase in the interfacial shear strength due to the pressure-induced generation of heterogeneous transfer films with thin, poor-hydrogenated, over-graphitized local regions embedded with enriched ironic sub-micro debris and </span>nanoparticles<span>, which inhibited further decrease of friction coefficient under extremely high contact pressure. These findings will enable more effective space applications of superlubricious a-C:H films under extreme conditions.</span></span></p></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":"215 ","pages":"Article 118457"},"PeriodicalIF":10.5000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622323007029","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Though hydrogenated amorphous carbon (a-C:H) films can provide macroscale superlubricity states in vacuum, their self-lubricating behaviors are highly dependent on the applied loads. The mechanisms of loss of superlubricity under ultra-low or extremely high contact pressure remain unclear. In this work, the origin of load-sensitive superlubricity of a-C:H films was revealed based on spatially resolved structural analyses of the sliding interfaces. The results highlighted the key role of contact pressure-induced diversified nano-structural evolution of transfer films in controlling superlubricity. To achieve superlubricity, a sufficiently high contact pressure was required to trigger the structural evolution of transfer films from polymer-like disordered bonding network structure towards locally ordered, layered-like sp2 nanoclustering structures. Robust superlubricity can still be maintained under extremely high peak Hertz contact pressure up to 4.87 GPa, which is the highest value reported for macroscopic superlubricity in carbon-based materials. Nevertheless, excessively high contact pressure can cause an increase in the interfacial shear strength due to the pressure-induced generation of heterogeneous transfer films with thin, poor-hydrogenated, over-graphitized local regions embedded with enriched ironic sub-micro debris and nanoparticles, which inhibited further decrease of friction coefficient under extremely high contact pressure. These findings will enable more effective space applications of superlubricious a-C:H films under extreme conditions.
期刊介绍:
The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.