Exploring blockchain-based metaverses: Data collection and valuation of virtual lands using machine learning techniques

Simone Casale-Brunet , Marco Mattavelli , Leonardo Chiariglione
{"title":"Exploring blockchain-based metaverses: Data collection and valuation of virtual lands using machine learning techniques","authors":"Simone Casale-Brunet ,&nbsp;Marco Mattavelli ,&nbsp;Leonardo Chiariglione","doi":"10.1016/j.digbus.2023.100068","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, the concept of the metaverse has evolved significantly, with the aim of defining richer immersive and interactive environments that can support various types of virtual experiences and interactions among users. This evolution has given rise to several metaverse platforms that utilize blockchain technology and non-fungible tokens (NFTs) to establish ownership of metaverse elements and attach features and information to them. This article seeks to delve into the complexity and heterogeneity of the data involved in these metaverse platforms and highlight some of the dynamics and features that make them unique. Additionally, the paper introduces a metaverse analysis tool developed by the authors, which leverages machine learning techniques to collect and analyze daily data, including blockchain transactions, platform-specific metadata, and social media trends. The experimental results of our approach are presented with a use-case scenario focused on the trading of digital parcels, commonly referred to as metaverse real estate. This scenario allows us to demonstrate the effectiveness of our tool and showcase the potential of using machine learning techniques to analyze and gain insights into the metaverse ecosystem.</p></div>","PeriodicalId":100376,"journal":{"name":"Digital Business","volume":"3 2","pages":"Article 100068"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666954423000169/pdfft?md5=b5879a1e9128577c30d5bf0d35051587&pid=1-s2.0-S2666954423000169-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Business","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666954423000169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, the concept of the metaverse has evolved significantly, with the aim of defining richer immersive and interactive environments that can support various types of virtual experiences and interactions among users. This evolution has given rise to several metaverse platforms that utilize blockchain technology and non-fungible tokens (NFTs) to establish ownership of metaverse elements and attach features and information to them. This article seeks to delve into the complexity and heterogeneity of the data involved in these metaverse platforms and highlight some of the dynamics and features that make them unique. Additionally, the paper introduces a metaverse analysis tool developed by the authors, which leverages machine learning techniques to collect and analyze daily data, including blockchain transactions, platform-specific metadata, and social media trends. The experimental results of our approach are presented with a use-case scenario focused on the trading of digital parcels, commonly referred to as metaverse real estate. This scenario allows us to demonstrate the effectiveness of our tool and showcase the potential of using machine learning techniques to analyze and gain insights into the metaverse ecosystem.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索基于区块链的元数据:使用机器学习技术收集和评估虚拟土地
近年来,虚拟世界的概念有了显著的发展,其目的是定义更丰富的沉浸式和交互式环境,可以支持各种类型的虚拟体验和用户之间的交互。这种演变产生了几个元宇宙平台,它们利用区块链技术和不可替代令牌(nft)来建立元宇宙元素的所有权,并为它们附加功能和信息。本文试图深入研究这些元宇宙平台中涉及的数据的复杂性和异构性,并强调使它们独特的一些动态和特性。此外,本文还介绍了作者开发的一种元数据分析工具,该工具利用机器学习技术收集和分析日常数据,包括区块链交易、特定平台的元数据和社交媒体趋势。我们的方法的实验结果与一个专注于数字包裹交易的用例场景一起呈现,通常被称为虚拟房地产。这个场景使我们能够展示我们的工具的有效性,并展示使用机器学习技术来分析和深入了解元生态系统的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.40
自引率
0.00%
发文量
0
期刊最新文献
Building digital platform ecosystems: A synthetization of fundamental design topics from a literature review Realising value from big data analytics: The process of affordance actualisation Sequential film marketing in China: The study of social platforms and their impacts Understanding determinants of digital transformation and digitizing management functions in incumbent SMEs Reinvestment intentions in cryptocurrency: Examining the dynamics of risks and investor risk tolerance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1