Texture-Driven Adaptive Mesh Refinement with Application to 3D Relief

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Computer-Aided Design Pub Date : 2023-11-04 DOI:10.1016/j.cad.2023.103640
Jiaze Li , Shengfa Wang , Eric Paquette
{"title":"Texture-Driven Adaptive Mesh Refinement with Application to 3D Relief","authors":"Jiaze Li ,&nbsp;Shengfa Wang ,&nbsp;Eric Paquette","doi":"10.1016/j.cad.2023.103640","DOIUrl":null,"url":null,"abstract":"<div><p>A high-quality 3D relief requires an appropriate refinement that has accurate carving boundaries with a limited number of added polygons. Most existing refinement methods cannot be applied to 3D reliefs directly, as they exhibit a mixture of problems such as not accurately following the texture contours, creating ill-shaped triangles, and excessively increasing the polygon count. We introduce an efficient texture-driven method to adaptively refine a mesh for 3D reliefs. From the user-provided binary texture, we conduct a feature-preserving self-adaptive sampling of texture contours. Our other inputs are a 3D mesh and the mapping of that mesh to texture space. We adapt a constraint-driven Red–Green subdivision to locally subdivide the mesh around the contours. Then, we conduct the adaptive mesh refinement by introducing a feature-adaptive <span><math><msqrt><mrow><mn>3</mn></mrow></msqrt></math></span>-subdivision. Finally, we apply the proposed algorithm to 3D reliefs, which enables generating a distinct relief. The presented method can attain accurate 3D relief while maintaining good mesh quality without the necessity of a high-resolution input. When compared to alternative approaches, ours consistently demonstrates superior polygon quality and maintains relief boundaries that closely follow the texture contours.</p></div>","PeriodicalId":50632,"journal":{"name":"Computer-Aided Design","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Design","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010448523001720","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

A high-quality 3D relief requires an appropriate refinement that has accurate carving boundaries with a limited number of added polygons. Most existing refinement methods cannot be applied to 3D reliefs directly, as they exhibit a mixture of problems such as not accurately following the texture contours, creating ill-shaped triangles, and excessively increasing the polygon count. We introduce an efficient texture-driven method to adaptively refine a mesh for 3D reliefs. From the user-provided binary texture, we conduct a feature-preserving self-adaptive sampling of texture contours. Our other inputs are a 3D mesh and the mapping of that mesh to texture space. We adapt a constraint-driven Red–Green subdivision to locally subdivide the mesh around the contours. Then, we conduct the adaptive mesh refinement by introducing a feature-adaptive 3-subdivision. Finally, we apply the proposed algorithm to 3D reliefs, which enables generating a distinct relief. The presented method can attain accurate 3D relief while maintaining good mesh quality without the necessity of a high-resolution input. When compared to alternative approaches, ours consistently demonstrates superior polygon quality and maintains relief boundaries that closely follow the texture contours.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纹理驱动的自适应网格细化与应用于3D浮雕
高质量的3D浮雕需要适当的细化,具有精确的雕刻边界和有限数量的添加多边形。大多数现有的改进方法不能直接应用于3D浮雕,因为它们表现出诸如不能准确地遵循纹理轮廓,创建病态三角形以及过度增加多边形计数等问题。介绍了一种有效的纹理驱动方法来自适应细化三维浮雕网格。基于用户提供的二值纹理,对纹理轮廓进行特征保持自适应采样。我们的其他输入是一个3D网格和该网格到纹理空间的映射。我们采用约束驱动的红绿细分来局部细分轮廓周围的网格。然后,通过引入特征自适应3-subdivision进行自适应网格细化。最后,我们将提出的算法应用于三维地形,使其能够生成不同的地形。该方法可以在不需要高分辨率输入的情况下获得精确的三维浮雕,同时保持良好的网格质量。与其他方法相比,我们的方法始终表现出优越的多边形质量,并保持与纹理轮廓密切相关的浮雕边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer-Aided Design
Computer-Aided Design 工程技术-计算机:软件工程
CiteScore
5.50
自引率
4.70%
发文量
117
审稿时长
4.2 months
期刊介绍: Computer-Aided Design is a leading international journal that provides academia and industry with key papers on research and developments in the application of computers to design. Computer-Aided Design invites papers reporting new research, as well as novel or particularly significant applications, within a wide range of topics, spanning all stages of design process from concept creation to manufacture and beyond.
期刊最新文献
Reconstruction and Preservation of Feature Curves in 3D Point Cloud Processing Editorial Board Texture-Driven Adaptive Mesh Refinement with Application to 3D Relief IF-TONIR: Iteration-free Topology Optimization based on Implicit Neural Representations Interface-Based Search and Automatic Reassembly of CAD Models for Database Expansion and Model Reuse
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1