The Lower Limb Movements of the Fetus in Uterus: A Narrative Review.

IF 1.8 4区 计算机科学 Q3 ENGINEERING, BIOMEDICAL Applied Bionics and Biomechanics Pub Date : 2023-01-01 DOI:10.1155/2023/4324889
Xiaoxue Zhao, Jan Awrejcewicz, Jianpeng Li, Yuhuan He, Yaodong Gu
{"title":"The Lower Limb Movements of the Fetus in Uterus: A Narrative Review.","authors":"Xiaoxue Zhao,&nbsp;Jan Awrejcewicz,&nbsp;Jianpeng Li,&nbsp;Yuhuan He,&nbsp;Yaodong Gu","doi":"10.1155/2023/4324889","DOIUrl":null,"url":null,"abstract":"<p><p>The fetus movements play an important role in fetal well-being. With the continuous advancement of real-time scanning machines, it is feasible to observe the fetus movement in detail. The characteristics of fetal lower limb movements in prenatal examination have not been systematically investigated. This review proposes the patterns of fetal lower limb movements, the maternal influence on fetal lower limb movements, and the application of fetal lower limb movements for the diagnosis of prenatal diseases. A systematic search of literature on the lower limb movements of the fetus in uterus was performed in the databases, namely, Web of Science and Scopus. Thirty-four publications were selected. This review demonstrates that isolated fetal lower limb movements are rare and always accompanied with the movements of other body segments. Detection of the presence of fetal leg movements seems to be of no diagnostic value for fetuses with prenatal diseases. The isolated lower limb movement was statistically significant different between fetuses of low- and high-risk pregnant women. The coordinated movements of the fetal lower limbs and other parts should be considered when analyzing fetal movements in the future study.</p>","PeriodicalId":8029,"journal":{"name":"Applied Bionics and Biomechanics","volume":"2023 ","pages":"4324889"},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9886482/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Bionics and Biomechanics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1155/2023/4324889","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The fetus movements play an important role in fetal well-being. With the continuous advancement of real-time scanning machines, it is feasible to observe the fetus movement in detail. The characteristics of fetal lower limb movements in prenatal examination have not been systematically investigated. This review proposes the patterns of fetal lower limb movements, the maternal influence on fetal lower limb movements, and the application of fetal lower limb movements for the diagnosis of prenatal diseases. A systematic search of literature on the lower limb movements of the fetus in uterus was performed in the databases, namely, Web of Science and Scopus. Thirty-four publications were selected. This review demonstrates that isolated fetal lower limb movements are rare and always accompanied with the movements of other body segments. Detection of the presence of fetal leg movements seems to be of no diagnostic value for fetuses with prenatal diseases. The isolated lower limb movement was statistically significant different between fetuses of low- and high-risk pregnant women. The coordinated movements of the fetal lower limbs and other parts should be considered when analyzing fetal movements in the future study.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
胎儿在子宫内的下肢运动:一个叙述性的回顾。
胎儿运动在胎儿健康中起着重要的作用。随着实时扫描设备的不断进步,对胎儿运动的详细观察已成为可能。产前检查中胎儿下肢运动的特点尚未得到系统的研究。本文就胎儿下肢运动模式、母体对胎儿下肢运动的影响以及胎儿下肢运动在产前疾病诊断中的应用进行综述。在Web of Science和Scopus数据库中系统检索有关子宫内胎儿下肢运动的文献。34份出版物入选。这篇综述表明,孤立的胎儿下肢运动是罕见的,并且总是伴随着其他身体部分的运动。检测胎儿腿部运动的存在似乎对患有产前疾病的胎儿没有诊断价值。低危孕妇和高危孕妇胎儿分离下肢运动差异有统计学意义。在今后的研究中,分析胎儿运动时应考虑胎儿下肢和其他部位的协调运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Bionics and Biomechanics
Applied Bionics and Biomechanics ENGINEERING, BIOMEDICAL-ROBOTICS
自引率
4.50%
发文量
338
审稿时长
>12 weeks
期刊介绍: Applied Bionics and Biomechanics publishes papers that seek to understand the mechanics of biological systems, or that use the functions of living organisms as inspiration for the design new devices. Such systems may be used as artificial replacements, or aids, for their original biological purpose, or be used in a different setting altogether.
期刊最新文献
Design and Control of an Upper Limb Bionic Exoskeleton Rehabilitation Device Based on Tensegrity Structure. The Effect of Different Degrees of Ankle Dorsiflexion Restriction on the Biomechanics of the Lower Extremity in Stop-Jumping. Evaluation of Cyclic Fatigue Resistance of Novel Replica-Like Instruments in Static Test Model. UCH-L1 Inhibitor Alleviates Nerve Damage Caused by Moyamoya Disease. Influence of Critical Shoulder Angle and Rotator Cuff Tear Type on Load-Induced Glenohumeral Biomechanics: A Sawbone Simulator Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1