SpheroidAnalyseR-an online platform for analyzing data from 3D spheroids or organoids grown in 96-well plates.

Rhiannon Barrow, Joseph N Wilkinson, Yichen He, Martin Callaghan, Anke Brüning-Richardson, Mark Dunning, Lucy F Stead
{"title":"SpheroidAnalyseR-an online platform for analyzing data from 3D spheroids or organoids grown in 96-well plates.","authors":"Rhiannon Barrow,&nbsp;Joseph N Wilkinson,&nbsp;Yichen He,&nbsp;Martin Callaghan,&nbsp;Anke Brüning-Richardson,&nbsp;Mark Dunning,&nbsp;Lucy F Stead","doi":"10.14440/jbm.2022.388","DOIUrl":null,"url":null,"abstract":"<p><p>Spheroids and organoids are increasingly popular three-dimensional (3D) cell culture models. Spheroid models are more physiologically relevant to a tumor compared to two-dimensional (2D) cultures and organoids are a simplified version of an organ with similar composition. Spheroids are often only formed from a single cell type which does not represent the situation <i>in vivo</i>. However, despite this, both spheroids and organoids can be used in cell migration studies, disease modelling and drug discovery. A drawback of these models is, however, the lack of appropriate analytical tools for high throughput imaging and analysis over a time course. To address this, we have developed an R Shiny app called SpheroidAnalyseR: a simple, fast, effective open-source app that allows the analysis of spheroid or organoid size data generated in a 96-well format. SpheroidAnalyseR processes and analyzes datasets of image measurements that can be obtained <i>via</i> a bespoke software, described herein, that automates spheroid imaging and quantification using the Nikon A1R Confocal Laser Scanning Microscope. However, templates are provided to enable users to input spheroid image measurements obtained by user-preferred methods. SpheroidAnalyseR facilitates outlier identification and removal followed by graphical visualization of spheroid measurements across multiple predefined parameters such as time, cell-type and treatment(s). Spheroid imaging and analysis can, thus, be reduced from hours to minutes, removing the requirement for substantial manual data manipulation in a spreadsheet application. The combination of spheroid generation in 96-well ultra-low attachment microplates, imaging using our bespoke software, and analysis using SpheroidAnalyseR toolkit allows high throughput, longitudinal quantification of 3D spheroid growth whilst minimizing user input and significantly improving the efficiency and reproducibility of data analysis. Our bespoke imaging software is available from https://github.com/GliomaGenomics. SpheroidAnalyseR is available at https://spheroidanalyser.leeds.ac.uk, and the source code found at https://github.com/GliomaGenomics.</p>","PeriodicalId":73618,"journal":{"name":"Journal of biological methods","volume":"9 4","pages":"e163"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/1e/fa/jbm-9-4-e163.PMC10040300.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biological methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14440/jbm.2022.388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Spheroids and organoids are increasingly popular three-dimensional (3D) cell culture models. Spheroid models are more physiologically relevant to a tumor compared to two-dimensional (2D) cultures and organoids are a simplified version of an organ with similar composition. Spheroids are often only formed from a single cell type which does not represent the situation in vivo. However, despite this, both spheroids and organoids can be used in cell migration studies, disease modelling and drug discovery. A drawback of these models is, however, the lack of appropriate analytical tools for high throughput imaging and analysis over a time course. To address this, we have developed an R Shiny app called SpheroidAnalyseR: a simple, fast, effective open-source app that allows the analysis of spheroid or organoid size data generated in a 96-well format. SpheroidAnalyseR processes and analyzes datasets of image measurements that can be obtained via a bespoke software, described herein, that automates spheroid imaging and quantification using the Nikon A1R Confocal Laser Scanning Microscope. However, templates are provided to enable users to input spheroid image measurements obtained by user-preferred methods. SpheroidAnalyseR facilitates outlier identification and removal followed by graphical visualization of spheroid measurements across multiple predefined parameters such as time, cell-type and treatment(s). Spheroid imaging and analysis can, thus, be reduced from hours to minutes, removing the requirement for substantial manual data manipulation in a spreadsheet application. The combination of spheroid generation in 96-well ultra-low attachment microplates, imaging using our bespoke software, and analysis using SpheroidAnalyseR toolkit allows high throughput, longitudinal quantification of 3D spheroid growth whilst minimizing user input and significantly improving the efficiency and reproducibility of data analysis. Our bespoke imaging software is available from https://github.com/GliomaGenomics. SpheroidAnalyseR is available at https://spheroidanalyser.leeds.ac.uk, and the source code found at https://github.com/GliomaGenomics.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
spheroidanalyzer -一个在线平台,用于分析96孔板中生长的3D球体或类器官的数据。
球体和类器官是越来越流行的三维(3D)细胞培养模型。与二维(2D)培养相比,球形模型在生理上与肿瘤更相关,类器官是具有相似组成的器官的简化版本。球状体通常只由一种细胞类型形成,这并不代表体内的情况。然而,尽管如此,球体和类器官都可以用于细胞迁移研究、疾病建模和药物发现。然而,这些模型的缺点是缺乏适当的分析工具来进行高通量成像和长时间分析。为了解决这个问题,我们开发了一个名为SpheroidAnalyseR的R Shiny应用程序:一个简单,快速,有效的开源应用程序,允许分析96孔格式生成的球体或类器官大小数据。SpheroidAnalyseR处理和分析图像测量数据集,这些数据集可以通过一个定制的软件获得,在这里描述,该软件使用尼康A1R共聚焦激光扫描显微镜自动进行球体成像和定量。然而,提供了模板,使用户能够输入通过用户首选方法获得的球体图像测量值。SpheroidAnalyseR有助于识别和去除异常值,然后通过多个预定义参数(如时间,细胞类型和处理)实现球体测量的图形可视化。因此,球体成像和分析可以从几小时减少到几分钟,从而消除了在电子表格应用程序中进行大量手动数据操作的需求。在96孔超低附着微孔板上生成球体,使用我们定制的软件进行成像,使用SpheroidAnalyseR工具包进行分析,可以实现高通量,纵向量化3D球体生长,同时最大限度地减少用户输入,并显着提高数据分析的效率和可重复性。我们的定制成像软件可从https://github.com/GliomaGenomics获得。SpheroidAnalyseR可在https://spheroidanalyser.leeds.ac.uk获得,源代码可在https://github.com/GliomaGenomics找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reappraisal of the fundamental mechanisms of the sHA14-1 molecule as a Bcl-2/Bcl-XL ligand in the context of anticancer therapy: A cell biological study. Combined T1-weighted MRI and diffusion MRI tractography of paraventricular, locus coeruleus, and dorsal vagal complex connectivity in brainstem-hypothalamic nuclei. Hematological parameters of the European hake (Merluccius merluccius) in Toroneos Gulf, northern Greece: A case study. Advanced UltraTech approach for distinguishing granulomatous from non-granulomatous corneal endothelial exudates in autoimmune rheumatic anterior uveitis. Extraordinary variance in meta-analysis of venom toxicity of 160 most lethal ophidians and guidelines for estimating human lethal dose range.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1