Exploring the Synergistic Effect of Sildenafil and Green Tea Polyphenols on Breast Cancer Stem Cell-like Cells and their Parental Cells: A Potential Novel Therapeutic Approach.
{"title":"Exploring the Synergistic Effect of Sildenafil and Green Tea Polyphenols on Breast Cancer Stem Cell-like Cells and their Parental Cells: A Potential Novel Therapeutic Approach.","authors":"Marzie Salari Sharif, Habibeh Sadat Mohseni, Mahnaz Khanavi, Shima Ghadami, Emad Jafarzadeh, Shohreh Tavajohi, Shima Aliebrahimi, Seyed Nasser Ostad","doi":"10.2174/0118715206276925231107060329","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Many cancer studies have intensely focused on the role of diet, among other factors involved in cancer establishment. The positive effect of green tea polyphenols (GTP) on controlling breast cancer cells has been reported in several studies. Cancer stem cell-like cells (CSC-LCs) possessing self-renewal, metastatic, and drug-resistant capacities are considered prominent therapeutic targets. In many tumors, inducible nitric oxide synthase (iNOS) expression levels are high; however, they have a dual effect on breast cancer pathogenesis.</p><p><strong>Objective: </strong>This study aimed to investigate the cytotoxicity of the iNOS agonist (Sildenafil) and antagonist (LNAME), both alone and in combination with GTP, on MDA-MB-231, CD44+/CD24- CSC-LCs, and their parental cells (MCF-7).</p><p><strong>Methods: </strong>The cell viability assay has been studied using the MTT assay. To analyze drug-drug combinations, CompuSyn and Combenefit software were used. The cytotoxicity mechanism was determined using flow cytometric analysis.</p><p><strong>Results: </strong>L-NAME and GTP showed a synergistic effect on MDA-MB-231 and CSC-LCs. Such an effect was not observed on MCF-7. Sildenafil and GTP, on the other hand, showed synergistic cytotoxicity in all the cells mentioned above. Flow cytometric tests resulted in more than 70% apoptosis in MDA-MB-231 and MCF-7. Also, sub-G1 arrest among MCF-7 cells and a considerable decrease in ROS production by MDA-MB-231 cells following treatment with Sildenafil and GTP were observed.</p><p><strong>Conclusion: </strong>Sildenafil, in combination with flavonoids, may be considered a novel strategy for cancer treatment.</p>","PeriodicalId":7934,"journal":{"name":"Anti-cancer agents in medicinal chemistry","volume":" ","pages":"304-315"},"PeriodicalIF":2.6000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-cancer agents in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0118715206276925231107060329","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Many cancer studies have intensely focused on the role of diet, among other factors involved in cancer establishment. The positive effect of green tea polyphenols (GTP) on controlling breast cancer cells has been reported in several studies. Cancer stem cell-like cells (CSC-LCs) possessing self-renewal, metastatic, and drug-resistant capacities are considered prominent therapeutic targets. In many tumors, inducible nitric oxide synthase (iNOS) expression levels are high; however, they have a dual effect on breast cancer pathogenesis.
Objective: This study aimed to investigate the cytotoxicity of the iNOS agonist (Sildenafil) and antagonist (LNAME), both alone and in combination with GTP, on MDA-MB-231, CD44+/CD24- CSC-LCs, and their parental cells (MCF-7).
Methods: The cell viability assay has been studied using the MTT assay. To analyze drug-drug combinations, CompuSyn and Combenefit software were used. The cytotoxicity mechanism was determined using flow cytometric analysis.
Results: L-NAME and GTP showed a synergistic effect on MDA-MB-231 and CSC-LCs. Such an effect was not observed on MCF-7. Sildenafil and GTP, on the other hand, showed synergistic cytotoxicity in all the cells mentioned above. Flow cytometric tests resulted in more than 70% apoptosis in MDA-MB-231 and MCF-7. Also, sub-G1 arrest among MCF-7 cells and a considerable decrease in ROS production by MDA-MB-231 cells following treatment with Sildenafil and GTP were observed.
Conclusion: Sildenafil, in combination with flavonoids, may be considered a novel strategy for cancer treatment.
期刊介绍:
Formerly: Current Medicinal Chemistry - Anti-Cancer Agents.
Anti-Cancer Agents in Medicinal Chemistry aims to cover all the latest and outstanding developments in medicinal chemistry and rational drug design for the discovery of anti-cancer agents.
Each issue contains a series of timely in-depth reviews and guest edited issues written by leaders in the field covering a range of current topics in cancer medicinal chemistry. The journal only considers high quality research papers for publication.
Anti-Cancer Agents in Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments in cancer drug discovery.