Atsunori Kaneshige, Longchuan Bai, Mi Wang, Donna McEachern, Jennifer L. Meagher, Renqi Xu, Paul D. Kirchhoff, Bo Wen, Duxin Sun, Jeanne A. Stuckey and Shaomeng Wang*,
{"title":"Discovery of a Potent and Selective STAT5 PROTAC Degrader with Strong Antitumor Activity In Vivo in Acute Myeloid Leukemia","authors":"Atsunori Kaneshige, Longchuan Bai, Mi Wang, Donna McEachern, Jennifer L. Meagher, Renqi Xu, Paul D. Kirchhoff, Bo Wen, Duxin Sun, Jeanne A. Stuckey and Shaomeng Wang*, ","doi":"10.1021/acs.jmedchem.2c01665","DOIUrl":null,"url":null,"abstract":"STAT5 is an attractive therapeutic target for human cancers. We report herein the discovery of a potent and selective STAT5 degrader with strong antitumor activity in vivo. We first obtained small-molecule ligands with sub-micromolar to low micromolar binding affinities to STAT5 and STAT6 SH2 domains and determined co-crystal structures of three such ligands in complex with STAT5A. We successfully transformed these ligands into potent and selective STAT5 degraders using the PROTAC technology with AK-2292 as the best compound. AK-2292 effectively induces degradation of STAT5A, STAT5B, and phosphorylated STAT5 proteins in a concentration- and time-dependent manner in acute myeloid leukemia (AML) cell lines and demonstrates excellent degradation selectivity for STAT5 over all other STAT members. It exerts potent and specific cell growth inhibitory activity in AML cell lines with high levels of phosphorylated STAT5. AK-2292 effectively reduces STAT5 protein in vivo and achieves strong antitumor activity in mice at well-tolerated dose schedules.","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2023-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jmedchem.2c01665","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 9
Abstract
STAT5 is an attractive therapeutic target for human cancers. We report herein the discovery of a potent and selective STAT5 degrader with strong antitumor activity in vivo. We first obtained small-molecule ligands with sub-micromolar to low micromolar binding affinities to STAT5 and STAT6 SH2 domains and determined co-crystal structures of three such ligands in complex with STAT5A. We successfully transformed these ligands into potent and selective STAT5 degraders using the PROTAC technology with AK-2292 as the best compound. AK-2292 effectively induces degradation of STAT5A, STAT5B, and phosphorylated STAT5 proteins in a concentration- and time-dependent manner in acute myeloid leukemia (AML) cell lines and demonstrates excellent degradation selectivity for STAT5 over all other STAT members. It exerts potent and specific cell growth inhibitory activity in AML cell lines with high levels of phosphorylated STAT5. AK-2292 effectively reduces STAT5 protein in vivo and achieves strong antitumor activity in mice at well-tolerated dose schedules.
期刊介绍:
The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents.
The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.