Taegeun Lee, Chan-Jeoung Park, Miyoung Kim, Young-Uk Cho, Seongsoo Jang, Sang-Hyun Hwang, Jung-Hee Lee, Dok Hyun Yoon
{"title":"Evaluation of laboratory diagnostic tests for light-chain clonality and bone marrow findings in AL amyloidosis.","authors":"Taegeun Lee, Chan-Jeoung Park, Miyoung Kim, Young-Uk Cho, Seongsoo Jang, Sang-Hyun Hwang, Jung-Hee Lee, Dok Hyun Yoon","doi":"10.5045/br.2023.2022232","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Light-chain amyloidosis (AL) is the most common form of systemic amyloidosis. This study aimed to evaluate the usefulness of laboratory tests for light-chain clonality and bone marrow (BM) findings in AL amyloidosis.</p><p><strong>Methods: </strong>We retrospectively enrolled patients newly diagnosed with AL amyloidosis on pathological examination who underwent a BM biopsy. Laboratory test data for light-chain clonality were collected and compared. Amyloid deposits were identified with H&E, Congo red, and PAS stains.</p><p><strong>Results: </strong>We reviewed 98 patients with AL amyloidosis. Light chain clonality (λ, 64 cases; κ, 34 cases) was detected by serum immunofixation electrophoresis (IFE) (63.3%), urine IFE (70.8%), serum protein electrophoresis (PEP) (44.9%), urine PEP (44.8%), serum free light chain (SFLC) ratio (79.5%), and BM immunohistochemistry (IHC) (85.7%). Flow cytometric (FCM) assay identified aberrant BM plasma cells in 92.9% of cases. BM amyloid deposits were identified in 35 of the 98 cases (35.7%); 71.4% (25/35) were Congo red-positive, and 100.0% (35/35) were PAS-positive.</p><p><strong>Conclusion: </strong>Laboratory tests for detecting light-chain clonality in AL amyloidosis in order of sensitivity include FCM assay for aberrant plasma cells, IHC for light chains on BM biopsy or clot section, SFLC ratio, and serum and urine IFE. Congo red staining of BM samples remains an important tool for identifying amyloid deposits in BM. Periodic acid-Schiff (PAS) staining can be useful in diagnosing some cases of Congo red-negative amyloidosis.</p>","PeriodicalId":46224,"journal":{"name":"Blood Research","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/04/be/br-58-1-71.PMC10063599.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blood Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5045/br.2023.2022232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Light-chain amyloidosis (AL) is the most common form of systemic amyloidosis. This study aimed to evaluate the usefulness of laboratory tests for light-chain clonality and bone marrow (BM) findings in AL amyloidosis.
Methods: We retrospectively enrolled patients newly diagnosed with AL amyloidosis on pathological examination who underwent a BM biopsy. Laboratory test data for light-chain clonality were collected and compared. Amyloid deposits were identified with H&E, Congo red, and PAS stains.
Results: We reviewed 98 patients with AL amyloidosis. Light chain clonality (λ, 64 cases; κ, 34 cases) was detected by serum immunofixation electrophoresis (IFE) (63.3%), urine IFE (70.8%), serum protein electrophoresis (PEP) (44.9%), urine PEP (44.8%), serum free light chain (SFLC) ratio (79.5%), and BM immunohistochemistry (IHC) (85.7%). Flow cytometric (FCM) assay identified aberrant BM plasma cells in 92.9% of cases. BM amyloid deposits were identified in 35 of the 98 cases (35.7%); 71.4% (25/35) were Congo red-positive, and 100.0% (35/35) were PAS-positive.
Conclusion: Laboratory tests for detecting light-chain clonality in AL amyloidosis in order of sensitivity include FCM assay for aberrant plasma cells, IHC for light chains on BM biopsy or clot section, SFLC ratio, and serum and urine IFE. Congo red staining of BM samples remains an important tool for identifying amyloid deposits in BM. Periodic acid-Schiff (PAS) staining can be useful in diagnosing some cases of Congo red-negative amyloidosis.