COVID-19 assessment using HMM cough recognition system.

Mohamed Hamidi, Ouissam Zealouk, Hassan Satori, Naouar Laaidi, Amine Salek
{"title":"COVID-19 assessment using HMM cough recognition system.","authors":"Mohamed Hamidi,&nbsp;Ouissam Zealouk,&nbsp;Hassan Satori,&nbsp;Naouar Laaidi,&nbsp;Amine Salek","doi":"10.1007/s41870-022-01120-7","DOIUrl":null,"url":null,"abstract":"<p><p>This paper is a part of our contributions to research on the ongoing COVID-19 pandemic around the world. This research aims to use Hidden Markov Model (HMM) based automatic speech recognition system to analyze the cough signal and determine whether the signal belongs to a sick or healthy speaker. We built a configurable model by using HMMs, Gaussian Mixture Models (GMMs), Mel frequency spectral coefficients (MFCCs) and a cough corpus collected from healthy and sick voluntary speakers. Our proposed method is able to classify dry cough with sensitivity from 85.86% to 91.57%, differentiate the dry cough, and cough COVID-19 symptom with specificity from 5 to 10%. The obtained results are very encouraging to enrich our corpus with more data and increase the performance of our diagnostic system.</p>","PeriodicalId":73455,"journal":{"name":"International journal of information technology : an official journal of Bharati Vidyapeeth's Institute of Computer Applications and Management","volume":"15 1","pages":"193-201"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9595586/pdf/","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of information technology : an official journal of Bharati Vidyapeeth's Institute of Computer Applications and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41870-022-01120-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper is a part of our contributions to research on the ongoing COVID-19 pandemic around the world. This research aims to use Hidden Markov Model (HMM) based automatic speech recognition system to analyze the cough signal and determine whether the signal belongs to a sick or healthy speaker. We built a configurable model by using HMMs, Gaussian Mixture Models (GMMs), Mel frequency spectral coefficients (MFCCs) and a cough corpus collected from healthy and sick voluntary speakers. Our proposed method is able to classify dry cough with sensitivity from 85.86% to 91.57%, differentiate the dry cough, and cough COVID-19 symptom with specificity from 5 to 10%. The obtained results are very encouraging to enrich our corpus with more data and increase the performance of our diagnostic system.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于HMM咳嗽识别系统的COVID-19评估。
本文是我们对全球正在进行的COVID-19大流行研究的一部分贡献。本研究旨在利用基于隐马尔可夫模型(HMM)的自动语音识别系统对咳嗽信号进行分析,判断该信号是属于生病还是健康的说话者。我们利用hmm、高斯混合模型(GMMs)、Mel频谱系数(MFCCs)和健康和患病自愿说话者的咳嗽语料库建立了一个可配置模型。该方法对干咳的分类灵敏度为85.86% ~ 91.57%,对干咳和咳嗽COVID-19症状的区分特异性为5% ~ 10%。所得结果对丰富语料库和提高诊断系统的性能具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Convolutional neural network based children recognition system using contactless fingerprints. On utilizing modified TOPSIS with R-norm q-rung picture fuzzy information measure green supplier selection. Adoption of machine learning algorithm for predicting the length of stay of patients (construction workers) during COVID pandemic. Adoption and sustainability of bitcoin and the blockchain technology in Nigeria. Debunking multi-lingual social media posts using deep learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1