{"title":"Recombinant Adenovirus siRNA Knocking Down the Ndufs4 Gene Alleviates Myocardial Apoptosis Induced by Oxidative Stress Injury.","authors":"Beibei Wang, Jinsheng Zhang, Aijun Xu","doi":"10.1155/2023/8141129","DOIUrl":null,"url":null,"abstract":"<p><p>Oxidative stress results in myocardial cell apoptosis and even life-threatening heart failure in myocardial ischemia-reperfusion injury. Specific blocking of the complex I could reduce cell apoptosis. Ndufs4 is a nuclear-encoded subunit of the mitochondrial complex I and participates in the electron transport chain. In this study, we designed and synthesized siRNA sequences knocking down the rat Ndufs4 gene, constructed recombinant adenovirus Ndufs4 siRNA (Ad-Ndufs4 siRNA), and primarily verified the role of Ndufs4 in oxidative stress injury. The results showed that the adenovirus infection rate was about 90%, and Ndufs4 mRNA and protein were decreased by 76.7% and 64.9%, respectively. Furthermore, the flow cytometry assay indicated that the cell apoptosis rate of the Ndufs4 siRNA group was significantly decreased as compared with the H<sub>2</sub>O<sub>2</sub>-treated group. In conclusion, we successfully constructed Ndufs4 siRNA recombinant adenovirus; furthermore, the downexpression of the Ndufs4 gene may alleviate H<sub>2</sub>O<sub>2</sub>-induced H9c2 cell apoptosis.</p>","PeriodicalId":9494,"journal":{"name":"Cardiology Research and Practice","volume":"2023 ","pages":"8141129"},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9897913/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiology Research and Practice","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2023/8141129","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Oxidative stress results in myocardial cell apoptosis and even life-threatening heart failure in myocardial ischemia-reperfusion injury. Specific blocking of the complex I could reduce cell apoptosis. Ndufs4 is a nuclear-encoded subunit of the mitochondrial complex I and participates in the electron transport chain. In this study, we designed and synthesized siRNA sequences knocking down the rat Ndufs4 gene, constructed recombinant adenovirus Ndufs4 siRNA (Ad-Ndufs4 siRNA), and primarily verified the role of Ndufs4 in oxidative stress injury. The results showed that the adenovirus infection rate was about 90%, and Ndufs4 mRNA and protein were decreased by 76.7% and 64.9%, respectively. Furthermore, the flow cytometry assay indicated that the cell apoptosis rate of the Ndufs4 siRNA group was significantly decreased as compared with the H2O2-treated group. In conclusion, we successfully constructed Ndufs4 siRNA recombinant adenovirus; furthermore, the downexpression of the Ndufs4 gene may alleviate H2O2-induced H9c2 cell apoptosis.
期刊介绍:
Cardiology Research and Practice is a peer-reviewed, Open Access journal that publishes original research articles, review articles, and clinical studies that focus on the diagnosis and treatment of cardiovascular disease. The journal welcomes submissions related to systemic hypertension, arrhythmia, congestive heart failure, valvular heart disease, vascular disease, congenital heart disease, and cardiomyopathy.