Biodegradable oxygen biosensors via electrospinning

Daniel B. Cybyk, Bonnie M. Reinsch, Kayla F. Presley, Ryan M. Schweller, Andrea Tedeschi, Teresa Burns, Francisco J. Chaparro, Jack T. Ly, Matthew J. Dalton, Monica Lozano, Tod A. Grusenmeyer, John J. Lannutti
{"title":"Biodegradable oxygen biosensors via electrospinning","authors":"Daniel B. Cybyk,&nbsp;Bonnie M. Reinsch,&nbsp;Kayla F. Presley,&nbsp;Ryan M. Schweller,&nbsp;Andrea Tedeschi,&nbsp;Teresa Burns,&nbsp;Francisco J. Chaparro,&nbsp;Jack T. Ly,&nbsp;Matthew J. Dalton,&nbsp;Monica Lozano,&nbsp;Tod A. Grusenmeyer,&nbsp;John J. Lannutti","doi":"10.1002/mds3.10149","DOIUrl":null,"url":null,"abstract":"<p>Monitoring oxygenation in vivo is critical to ensuring human health, particularly in the context of ‘silent’ hypoxia. Utilizing blends of biodegradable polycaprolactone (PCL) and gelatine, we sought to develop an electrospun oxygen sensor that maintains the advantages of robust, phosphorescent oxygen-sensing chromophores while providing resorbable polymeric scaffolds benefiting from tailorable degradation times ranging from hours to weeks. Electrospun sensors successfully provide accurate oxygen measurements for periods &gt;1 month. In vitro testing took place in a custom aqueous testing system over five weeks in 37°C phosphate-buffered saline (PBS); dissolved oxygen concentrations were maintained at 0–5% O<sub>2</sub> where physoxia characteristic of the subdermal environment is defined as 2–5% O<sub>2</sub>. Excited state chromophore lifetime (τ) is quenched in the presence of dissolved diatomic oxygen and is influenced by characteristics of the surrounding matrix. The observed final deoxygenated τ (τ<sub>0</sub>) values were split into 3 groups: polysulphone (PSU)-PCL (~397 µs) &gt;75:25, 50:50 and 25:75 PCL:gelatine (~191–182 µs) &gt; PCL, 10:90 PCL:gelatine, 1:99 crosslinked PCL:gelatine (~145–135 µs). Highly linear Stern–Volmer activity enabling accurate and precise calibration was observed even after 35 days of exposure; this proves that non-core–shell fibres consisting of blends of PCL and gelatine can yield predictable lifetime values for &gt;30 days in vitro. Scanning electron microscopy and mass loss data revealed that sensor degradation is highly tailorable, allowing for the fabrication of sensors engineered for a specific biomedical time frame. In contrast, core–shell fibre sensors showed more variability in lifetime following internal degradation likely caused by caproic acid entrapment by the PCL ‘shell’. This work demonstrates that biodegradable and biocompatible optically monitored sensors can be fabricated to provide direct, accurate assessments of oxygenation, even as the sensor platform degrades in a controlled manner. Such technologies have the potential to substantially change respiratory disease management.</p>","PeriodicalId":87324,"journal":{"name":"Medical devices & sensors","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/mds3.10149","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical devices & sensors","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mds3.10149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Monitoring oxygenation in vivo is critical to ensuring human health, particularly in the context of ‘silent’ hypoxia. Utilizing blends of biodegradable polycaprolactone (PCL) and gelatine, we sought to develop an electrospun oxygen sensor that maintains the advantages of robust, phosphorescent oxygen-sensing chromophores while providing resorbable polymeric scaffolds benefiting from tailorable degradation times ranging from hours to weeks. Electrospun sensors successfully provide accurate oxygen measurements for periods >1 month. In vitro testing took place in a custom aqueous testing system over five weeks in 37°C phosphate-buffered saline (PBS); dissolved oxygen concentrations were maintained at 0–5% O2 where physoxia characteristic of the subdermal environment is defined as 2–5% O2. Excited state chromophore lifetime (τ) is quenched in the presence of dissolved diatomic oxygen and is influenced by characteristics of the surrounding matrix. The observed final deoxygenated τ (τ0) values were split into 3 groups: polysulphone (PSU)-PCL (~397 µs) >75:25, 50:50 and 25:75 PCL:gelatine (~191–182 µs) > PCL, 10:90 PCL:gelatine, 1:99 crosslinked PCL:gelatine (~145–135 µs). Highly linear Stern–Volmer activity enabling accurate and precise calibration was observed even after 35 days of exposure; this proves that non-core–shell fibres consisting of blends of PCL and gelatine can yield predictable lifetime values for >30 days in vitro. Scanning electron microscopy and mass loss data revealed that sensor degradation is highly tailorable, allowing for the fabrication of sensors engineered for a specific biomedical time frame. In contrast, core–shell fibre sensors showed more variability in lifetime following internal degradation likely caused by caproic acid entrapment by the PCL ‘shell’. This work demonstrates that biodegradable and biocompatible optically monitored sensors can be fabricated to provide direct, accurate assessments of oxygenation, even as the sensor platform degrades in a controlled manner. Such technologies have the potential to substantially change respiratory disease management.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过静电纺丝的可生物降解氧生物传感器
监测体内氧合对确保人体健康至关重要,特别是在“无声”缺氧的情况下。利用可生物降解的聚己内酯(PCL)和明胶的混合物,我们试图开发一种电纺丝氧传感器,它保持了强大的磷光氧传感发色团的优势,同时提供了可吸收的聚合物支架,受益于可定制的降解时间从几小时到几周。静电纺丝传感器成功地提供精确的氧气测量周期为1个月。体外测试在定制的水溶液测试系统中进行,在37°C磷酸盐缓冲盐水(PBS)中进行5周;溶解氧浓度维持在0-5% O2,其中皮下环境的生理缺氧特征定义为2-5% O2。激发态发色团寿命(τ)在溶解的双原子氧存在下淬灭,并受周围基质特性的影响。观察到的最终脱氧τ (τ0)值分为3组:聚砜(PSU)-PCL(~397µs) >75:25, 50:50和25:75 PCL:明胶(~191 ~ 182µs) >PCL, 10:90 PCL:明胶,1:99交联PCL:明胶(~ 145-135µs)。即使在暴露35天后,也能观察到高度线性的斯特恩-沃尔默活性,从而实现准确和精确的校准;这证明由PCL和明胶混合物组成的非核壳纤维可以在体外产生可预测的30天寿命值。扫描电子显微镜和质量损失数据显示,传感器的降解是高度可定制的,允许为特定的生物医学时间框架设计传感器的制造。相比之下,核-壳纤维传感器在内部降解后的寿命表现出更多的可变性,这可能是由于PCL“壳”捕获己酸引起的。这项工作表明,即使传感器平台以受控的方式降解,也可以制造可生物降解和生物相容的光学监测传感器,以提供直接,准确的氧合评估。这些技术有可能大大改变呼吸系统疾病的管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Featured Cover The medical applications of biobased aerogels: ‘Natural aerogels for medical usage’ Molecularly imprinted materials for biomedical sensing 3D printing of polymeric Coatings on AZ31 Mg alloy Substrate for Corrosion Protection of biomedical implants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1