{"title":"Clinical Benefits of Therapeutic Interventions Targeting Mitochondria in Parkinson's Disease Patients.","authors":"Matteo Ciocca, Chiara Pizzamiglio","doi":"10.2174/1871527322666230330122444","DOIUrl":null,"url":null,"abstract":"<p><p>Parkinson's disease is the second most common neurodegenerative disease. Mitochondrial dysfunction has been associated with neurodegeneration in Parkinson's disease, and several treatments targeting mitochondria have been tested in these patients to delay disease progression and tackle disease symptoms. Herein, we review available data from randomised, double-blind clinical studies that have investigated the role of compounds targeting mitochondria in idiopathic Parkinson's disease patients, with a view of providing patients and clinicians with a comprehensive and practical paper that can inform therapeutic interventions in this group of people. A total of 9 compounds have been tested in randomized clinical trials, but only exenatide has shown some promising neuroprotective and symptomatic effects. However, whether this evidence can be translated into daily clinical practice still needs to be confirmed. In conclusion, targeting mitochondrial dysfunction in Parkinson's disease is a promising therapeutic approach, although only one compound has shown a positive effect on Parkinson's disease progression and symptoms. New compounds have been investigated in animal models, and their efficacy needs to be confirmed in humans through robust, randomised, double-blind clinical trials.</p>","PeriodicalId":10456,"journal":{"name":"CNS & neurological disorders drug targets","volume":" ","pages":"554-561"},"PeriodicalIF":2.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11071650/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CNS & neurological disorders drug targets","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1871527322666230330122444","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Parkinson's disease is the second most common neurodegenerative disease. Mitochondrial dysfunction has been associated with neurodegeneration in Parkinson's disease, and several treatments targeting mitochondria have been tested in these patients to delay disease progression and tackle disease symptoms. Herein, we review available data from randomised, double-blind clinical studies that have investigated the role of compounds targeting mitochondria in idiopathic Parkinson's disease patients, with a view of providing patients and clinicians with a comprehensive and practical paper that can inform therapeutic interventions in this group of people. A total of 9 compounds have been tested in randomized clinical trials, but only exenatide has shown some promising neuroprotective and symptomatic effects. However, whether this evidence can be translated into daily clinical practice still needs to be confirmed. In conclusion, targeting mitochondrial dysfunction in Parkinson's disease is a promising therapeutic approach, although only one compound has shown a positive effect on Parkinson's disease progression and symptoms. New compounds have been investigated in animal models, and their efficacy needs to be confirmed in humans through robust, randomised, double-blind clinical trials.
期刊介绍:
Aims & Scope
CNS & Neurological Disorders - Drug Targets aims to cover all the latest and outstanding developments on the medicinal chemistry, pharmacology, molecular biology, genomics and biochemistry of contemporary molecular targets involved in neurological and central nervous system (CNS) disorders e.g. disease specific proteins, receptors, enzymes, genes.
CNS & Neurological Disorders - Drug Targets publishes guest edited thematic issues written by leaders in the field covering a range of current topics of CNS & neurological drug targets. The journal also accepts for publication original research articles, letters, reviews and drug clinical trial studies.
As the discovery, identification, characterization and validation of novel human drug targets for neurological and CNS drug discovery continues to grow; this journal is essential reading for all pharmaceutical scientists involved in drug discovery and development.