Hyeok-Il Kwon, Duy Tien Do, Hung Van Vo, Seung-Chul Lee, Min Ho Kim, Dung Thi Thuy Nguyen, Tan Minh Tran, Quang Tin Vinh Le, Tram Thi Ngoc Ngo, Nam Minh Nguyen, Joo Young Lee, Toan Tat Nguyen
{"title":"Development of optimized protocol for culturing African swine fever virus field isolates in MA104 cells.","authors":"Hyeok-Il Kwon, Duy Tien Do, Hung Van Vo, Seung-Chul Lee, Min Ho Kim, Dung Thi Thuy Nguyen, Tan Minh Tran, Quang Tin Vinh Le, Tram Thi Ngoc Ngo, Nam Minh Nguyen, Joo Young Lee, Toan Tat Nguyen","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The goal of this study was to identify a candidate commercial cell line for the replication of African swine fever virus (ASFV) by comparing several available cell lines with various medium factors. In the sensitivity test of cells, MA104 and MARC-145 had strong potential for ASFV replication. Next, MA104 cells were used to compare the adaptation of ASFV obtained from tissue homogenates and blood samples in various infectious media. At the 10th passage, the ASFV obtained from the blood sample had a significantly higher viral load than that obtained from the tissue sample (<i>P</i> = 0.000), exhibiting a mean cycle threshold (Ct) value = 20.39 ± 1.99 compared with 25.36 ± 2.11. For blood samples, ASFV grew on infectious medium B more robustly than on infectious medium A (<i>P</i> = 0.006), corresponding to a Ct value = 19.58 ± 2.10 <i>versus</i> 21.20 ± 1.47. African swine fever virus originating from blood specimens continued to multiply gradually and peaked in the 15th passage, exhibiting a Ct value = 14.36 ± 0.22 in infectious medium B and a Ct value = 15.42 ± 0.14 in infectious medium A. When ASFV was cultured from tissue homogenates, however, there was no difference (<i>P</i> = 0.062) in ASFV growth between infectious media A and B. A model was developed to enhance ASFV replication through adaptation to MA104 cells. The lack of mutation at the genetic segments encoding p72, p54, p30, and the central hypervariable region (CVR) in serial culture passages is important in increasing the probability of maintaining immunogenicity when developing a vaccine candidate.</p>","PeriodicalId":9550,"journal":{"name":"Canadian journal of veterinary research = Revue canadienne de recherche veterinaire","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9536354/pdf/cjvr_04_261.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian journal of veterinary research = Revue canadienne de recherche veterinaire","FirstCategoryId":"97","ListUrlMain":"","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Veterinary","Score":null,"Total":0}
引用次数: 0
Abstract
The goal of this study was to identify a candidate commercial cell line for the replication of African swine fever virus (ASFV) by comparing several available cell lines with various medium factors. In the sensitivity test of cells, MA104 and MARC-145 had strong potential for ASFV replication. Next, MA104 cells were used to compare the adaptation of ASFV obtained from tissue homogenates and blood samples in various infectious media. At the 10th passage, the ASFV obtained from the blood sample had a significantly higher viral load than that obtained from the tissue sample (P = 0.000), exhibiting a mean cycle threshold (Ct) value = 20.39 ± 1.99 compared with 25.36 ± 2.11. For blood samples, ASFV grew on infectious medium B more robustly than on infectious medium A (P = 0.006), corresponding to a Ct value = 19.58 ± 2.10 versus 21.20 ± 1.47. African swine fever virus originating from blood specimens continued to multiply gradually and peaked in the 15th passage, exhibiting a Ct value = 14.36 ± 0.22 in infectious medium B and a Ct value = 15.42 ± 0.14 in infectious medium A. When ASFV was cultured from tissue homogenates, however, there was no difference (P = 0.062) in ASFV growth between infectious media A and B. A model was developed to enhance ASFV replication through adaptation to MA104 cells. The lack of mutation at the genetic segments encoding p72, p54, p30, and the central hypervariable region (CVR) in serial culture passages is important in increasing the probability of maintaining immunogenicity when developing a vaccine candidate.
期刊介绍:
The Canadian Journal of Veterinary Research, published by the Canadian Veterinary Medical Association, is Canada''s only veterinary research publication. This quarterly peer-reviewed online-only journal has earned a wide international readership through the publishing of high quality scientific papers in the field of veterinary medicine. The Journal publishes the results of original research in veterinary and comparative medicine.