Srikanta Dash, Prabira Kumar Sethy, Santi Kumari Behera
{"title":"Cervical Transformation Zone Segmentation and Classification based on Improved Inception-ResNet-V2 Using Colposcopy Images.","authors":"Srikanta Dash, Prabira Kumar Sethy, Santi Kumari Behera","doi":"10.1177/11769351231161477","DOIUrl":null,"url":null,"abstract":"<p><p>The second most frequent malignancy in women worldwide is cervical cancer. In the transformation(transitional) zone, which is a region of the cervix, columnar cells are continuously converting into squamous cells. The most typical location on the cervix for the development of aberrant cells is the transformation zone, a region of transforming cells. This article suggests a 2-phase method that includes segmenting and classifying the transformation zone to identify the type of cervical cancer. In the initial stage, the transformation zone is segmented from the colposcopy images. The segmented images are then subjected to the augmentation process and identified with the improved inception-resnet-v2. Here, multi-scale feature fusion framework that utilizes 3 × 3 convolution kernels from Reduction-A and Reduction-B of inception-resnet-v2 is introduced. The feature extracted from Reduction-A and Reduction -B is concatenated and fed to SVM for classification. This way, the model combines the benefits of residual networks and Inception convolution, increasing network width and resolving the deep network's training issue. The network can extract several scales of contextual information due to the multi-scale feature fusion, which increases accuracy. The experimental results reveal 81.24% accuracy, 81.24% sensitivity, 90.62% specificity, 87.52% precision, 9.38% FPR, and 81.68% F1 score, 75.27% MCC, and 57.79% Kappa coefficient.</p>","PeriodicalId":35418,"journal":{"name":"Cancer Informatics","volume":"22 ","pages":"11769351231161477"},"PeriodicalIF":2.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ad/c1/10.1177_11769351231161477.PMC10064461.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11769351231161477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The second most frequent malignancy in women worldwide is cervical cancer. In the transformation(transitional) zone, which is a region of the cervix, columnar cells are continuously converting into squamous cells. The most typical location on the cervix for the development of aberrant cells is the transformation zone, a region of transforming cells. This article suggests a 2-phase method that includes segmenting and classifying the transformation zone to identify the type of cervical cancer. In the initial stage, the transformation zone is segmented from the colposcopy images. The segmented images are then subjected to the augmentation process and identified with the improved inception-resnet-v2. Here, multi-scale feature fusion framework that utilizes 3 × 3 convolution kernels from Reduction-A and Reduction-B of inception-resnet-v2 is introduced. The feature extracted from Reduction-A and Reduction -B is concatenated and fed to SVM for classification. This way, the model combines the benefits of residual networks and Inception convolution, increasing network width and resolving the deep network's training issue. The network can extract several scales of contextual information due to the multi-scale feature fusion, which increases accuracy. The experimental results reveal 81.24% accuracy, 81.24% sensitivity, 90.62% specificity, 87.52% precision, 9.38% FPR, and 81.68% F1 score, 75.27% MCC, and 57.79% Kappa coefficient.
期刊介绍:
The field of cancer research relies on advances in many other disciplines, including omics technology, mass spectrometry, radio imaging, computer science, and biostatistics. Cancer Informatics provides open access to peer-reviewed high-quality manuscripts reporting bioinformatics analysis of molecular genetics and/or clinical data pertaining to cancer, emphasizing the use of machine learning, artificial intelligence, statistical algorithms, advanced imaging techniques, data visualization, and high-throughput technologies. As the leading journal dedicated exclusively to the report of the use of computational methods in cancer research and practice, Cancer Informatics leverages methodological improvements in systems biology, genomics, proteomics, metabolomics, and molecular biochemistry into the fields of cancer detection, treatment, classification, risk-prediction, prevention, outcome, and modeling.