Computational Efficiency and Precision for Replicated-Count and Batch-Marked Hidden Population Models.

Matthew R P Parker, Laura L E Cowen, Jiguo Cao, Lloyd T Elliott
{"title":"Computational Efficiency and Precision for Replicated-Count and Batch-Marked Hidden Population Models.","authors":"Matthew R P Parker,&nbsp;Laura L E Cowen,&nbsp;Jiguo Cao,&nbsp;Lloyd T Elliott","doi":"10.1007/s13253-022-00509-y","DOIUrl":null,"url":null,"abstract":"<p><p>We address two computational issues common to open-population <i>N</i>-mixture models, hidden integer-valued autoregressive models, and some hidden Markov models. The first issue is computation time, which can be dramatically improved through the use of a fast Fourier transform. The second issue is tractability of the model likelihood function for large numbers of hidden states, which can be solved by improving numerical stability of calculations. As an illustrative example, we detail the application of these methods to the open-population <i>N</i>-mixture models. We compare computational efficiency and precision between these methods and standard methods employed by state-of-the-art ecological software. We show faster computing times (a <math><mrow><mo>∼</mo> <mn>6</mn></mrow> </math> to <math><mrow><mo>∼</mo> <mn>30</mn></mrow> </math> times speed improvement for population size upper bounds of 500 and 1000, respectively) over state-of-the-art ecological software for <i>N</i>-mixture models. We also apply our methods to compute the size of a large elk population using an <i>N</i>-mixture model and show that while our methods converge, previous software cannot produce estimates due to numerical issues. These solutions can be applied to many ecological models to improve precision when logs of sums exist in the likelihood function and to improve computational efficiency when convolutions are present in the likelihood function. Supplementary materials accompanying this paper appear online. Supplementary materials for this article are available at 10.1007/s13253-022-00509-y.</p>","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9434542/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural Biological and Environmental Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13253-022-00509-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

We address two computational issues common to open-population N-mixture models, hidden integer-valued autoregressive models, and some hidden Markov models. The first issue is computation time, which can be dramatically improved through the use of a fast Fourier transform. The second issue is tractability of the model likelihood function for large numbers of hidden states, which can be solved by improving numerical stability of calculations. As an illustrative example, we detail the application of these methods to the open-population N-mixture models. We compare computational efficiency and precision between these methods and standard methods employed by state-of-the-art ecological software. We show faster computing times (a 6 to 30 times speed improvement for population size upper bounds of 500 and 1000, respectively) over state-of-the-art ecological software for N-mixture models. We also apply our methods to compute the size of a large elk population using an N-mixture model and show that while our methods converge, previous software cannot produce estimates due to numerical issues. These solutions can be applied to many ecological models to improve precision when logs of sums exist in the likelihood function and to improve computational efficiency when convolutions are present in the likelihood function. Supplementary materials accompanying this paper appear online. Supplementary materials for this article are available at 10.1007/s13253-022-00509-y.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
复制计数和批量标记隐藏人口模型的计算效率和精度。
我们解决了开放种群n混合模型、隐整值自回归模型和一些隐马尔可夫模型中常见的两个计算问题。第一个问题是计算时间,通过使用快速傅里叶变换可以显著改善计算时间。第二个问题是模型似然函数对于大量隐藏状态的可跟踪性,这可以通过提高计算的数值稳定性来解决。作为一个说明性的例子,我们详细介绍了这些方法在开放种群n-混合物模型中的应用。我们比较了这些方法和最先进的生态软件采用的标准方法之间的计算效率和精度。我们展示了比n -混合物模型的最先进的生态软件更快的计算时间(在种群规模上界分别为500和1000时,速度提高了~ 6到~ 30倍)。我们还应用我们的方法使用n混合模型来计算大型麋鹿种群的规模,并表明虽然我们的方法收敛,但由于数值问题,以前的软件无法产生估计。这些解决方案可以应用于许多生态模型,以提高在似然函数中存在和的对数时的精度,并提高在似然函数中存在卷积时的计算效率。本文附带的补充资料出现在网上。本文的补充资料请参见10.1007/s13253-022-00509-y。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.70
自引率
7.10%
发文量
38
审稿时长
>12 weeks
期刊介绍: The Journal of Agricultural, Biological and Environmental Statistics (JABES) publishes papers that introduce new statistical methods to solve practical problems in the agricultural sciences, the biological sciences (including biotechnology), and the environmental sciences (including those dealing with natural resources). Papers that apply existing methods in a novel context are also encouraged. Interdisciplinary papers and papers that illustrate the application of new and important statistical methods using real data are strongly encouraged. The journal does not normally publish papers that have a primary focus on human genetics, human health, or medical statistics.
期刊最新文献
Algorithms for Fitting the Space-Time ETAS Model to Earthquake Catalog Data: A Comparative Study Bayesian Approaches to Proxy Uncertainty Quantification in Paleoecology: A Mathematical Justification and Practical Integration Stopping Rule Sampling to Monitor and Protect Endangered Species Environmental Loss Assessment via Functional Outlier Detection of Transformed Biodiversity Profiles Expectations of Linear and Nonlinear Hawkes Processes Using a Field-Theoretical Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1