Universal Hopfield Networks: A General Framework for Single-Shot Associative Memory Models.

Beren Millidge, Tommaso Salvatori, Yuhang Song, Thomas Lukasiewicz, Rafal Bogacz
{"title":"Universal Hopfield Networks: A General Framework for Single-Shot Associative Memory Models.","authors":"Beren Millidge,&nbsp;Tommaso Salvatori,&nbsp;Yuhang Song,&nbsp;Thomas Lukasiewicz,&nbsp;Rafal Bogacz","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>A large number of neural network models of associative memory have been proposed in the literature. These include the classical Hopfield networks (HNs), sparse distributed memories (SDMs), and more recently the modern continuous Hopfield networks (MCHNs), which possess close links with self-attention in machine learning. In this paper, we propose a general framework for understanding the operation of such memory networks as a sequence of three operations: <i>similarity</i>, <i>separation</i>, and <i>projection</i>. We derive all these memory models as instances of our general framework with differing similarity and separation functions. We extend the mathematical framework of Krotov & Hopfield (2020) to express general associative memory models using neural network dynamics with local computation, and derive a general energy function that is a Lyapunov function of the dynamics. Finally, using our framework, we empirically investigate the capacity of using different similarity functions for these associative memory models, beyond the dot product similarity measure, and demonstrate empirically that Euclidean or Manhattan distance similarity metrics perform substantially better in practice on many tasks, enabling a more robust retrieval and higher memory capacity than existing models.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"162 ","pages":"15561-15583"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7614148/pdf/EMS163745.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of machine learning research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A large number of neural network models of associative memory have been proposed in the literature. These include the classical Hopfield networks (HNs), sparse distributed memories (SDMs), and more recently the modern continuous Hopfield networks (MCHNs), which possess close links with self-attention in machine learning. In this paper, we propose a general framework for understanding the operation of such memory networks as a sequence of three operations: similarity, separation, and projection. We derive all these memory models as instances of our general framework with differing similarity and separation functions. We extend the mathematical framework of Krotov & Hopfield (2020) to express general associative memory models using neural network dynamics with local computation, and derive a general energy function that is a Lyapunov function of the dynamics. Finally, using our framework, we empirically investigate the capacity of using different similarity functions for these associative memory models, beyond the dot product similarity measure, and demonstrate empirically that Euclidean or Manhattan distance similarity metrics perform substantially better in practice on many tasks, enabling a more robust retrieval and higher memory capacity than existing models.

Abstract Image

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通用Hopfield网络:单镜头联想记忆模型的通用框架。
文献中提出了大量的联想记忆神经网络模型。这些包括经典的Hopfield网络(HNs),稀疏分布记忆(SDMs),以及最近的现代连续Hopfield网络(MCHNs),它们与机器学习中的自关注有着密切的联系。在本文中,我们提出了一个一般框架来理解这种记忆网络的操作,作为三个操作的序列:相似,分离和投影。我们将所有这些记忆模型作为我们的一般框架的实例,具有不同的相似性和分离功能。我们扩展了Krotov & Hopfield(2020)的数学框架,使用局部计算的神经网络动力学来表达一般的联想记忆模型,并推导出一个一般的能量函数,该函数是动力学的Lyapunov函数。最后,使用我们的框架,我们实证研究了在这些联想记忆模型中使用不同相似函数的能力,超越了点积相似度量,并实证证明欧几里得或曼哈顿距离相似度量在实践中在许多任务中表现得更好,实现了比现有模型更强大的检索和更高的记忆容量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Contrastive Learning for Clinical Outcome Prediction with Partial Data Sources. Multi-Source Conformal Inference Under Distribution Shift. DISCRET: Synthesizing Faithful Explanations For Treatment Effect Estimation. Kernel Debiased Plug-in Estimation: Simultaneous, Automated Debiasing without Influence Functions for Many Target Parameters. Adapt and Diffuse: Sample-Adaptive Reconstruction Via Latent Diffusion Models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1