Pixel-Perfect Structure-From-Motion With Featuremetric Refinement

Paul-Edouard Sarlin;Philipp Lindenberger;Viktor Larsson;Marc Pollefeys
{"title":"Pixel-Perfect Structure-From-Motion With Featuremetric Refinement","authors":"Paul-Edouard Sarlin;Philipp Lindenberger;Viktor Larsson;Marc Pollefeys","doi":"10.1109/TPAMI.2023.3237269","DOIUrl":null,"url":null,"abstract":"Finding local features that are repeatable across multiple views is a cornerstone of sparse 3D reconstruction. The classical image matching paradigm detects keypoints per-image once and for all, which can yield poorly-localized features and propagate large errors to the final geometry. In this article, we refine two key steps of structure-from-motion by a direct alignment of low-level image information from multiple views: we first adjust the initial keypoint locations prior to any geometric estimation, and subsequently refine points and camera poses as a post-processing. This refinement is robust to large detection noise and appearance changes, as it optimizes a <italic>featuremetric</i> error based on dense features predicted by a neural network. This significantly improves the accuracy of camera poses and scene geometry for a wide range of keypoint detectors, challenging viewing conditions, and off-the-shelf deep features. Our system easily scales to large image collections, enabling pixel-perfect crowd-sourced localization at scale.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"47 5","pages":"3298-3309"},"PeriodicalIF":18.6000,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10018409/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Finding local features that are repeatable across multiple views is a cornerstone of sparse 3D reconstruction. The classical image matching paradigm detects keypoints per-image once and for all, which can yield poorly-localized features and propagate large errors to the final geometry. In this article, we refine two key steps of structure-from-motion by a direct alignment of low-level image information from multiple views: we first adjust the initial keypoint locations prior to any geometric estimation, and subsequently refine points and camera poses as a post-processing. This refinement is robust to large detection noise and appearance changes, as it optimizes a featuremetric error based on dense features predicted by a neural network. This significantly improves the accuracy of camera poses and scene geometry for a wide range of keypoint detectors, challenging viewing conditions, and off-the-shelf deep features. Our system easily scales to large image collections, enabling pixel-perfect crowd-sourced localization at scale.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过特征度量细化实现运动中的像素完美结构。
寻找可在多个视图中重复的局部特征是稀疏三维重建的基石。经典的图像匹配范例对每张图像的关键点进行一次性检测,这可能会产生定位不清的特征,并对最终几何图形产生较大误差。在本文中,我们通过对多个视图的低级图像信息进行直接配准,完善了 "从运动看结构 "的两个关键步骤:我们首先在进行任何几何估算之前调整初始关键点位置,然后作为后处理完善点和摄像机姿势。这种细化能抵御较大的检测噪声和外观变化,因为它根据神经网络预测的密集特征优化了特征度误差。这大大提高了摄像机姿势和场景几何的准确性,适用于各种关键点检测器、具有挑战性的观察条件和现成的深度特征。我们的系统可轻松扩展到大型图像集合,从而实现像素完美的大规模众包定位。我们的代码可在 https://github.com/cvg/pixel-perfect-sfm 网站上公开获取,作为广受欢迎的运动结构软件 COLMAP 的附加组件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unsupervised Gaze Representation Learning by Switching Features. H2OT: Hierarchical Hourglass Tokenizer for Efficient Video Pose Transformers. MV2DFusion: Leveraging Modality-Specific Object Semantics for Multi-Modal 3D Detection. Parse Trees Guided LLM Prompt Compression. Cross-Spectral Analysis of Bivariate Graph Signals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1