Development and evaluation of Hedyotis corymbosa (L.) extract containing phytosomes: a preclinical approach for treatment of neuropathic pain in rodent model.

IF 3 4区 医学 Q2 CHEMISTRY, APPLIED Journal of microencapsulation Pub Date : 2023-05-01 DOI:10.1080/02652048.2023.2188938
Nitin Kumar, Radha Goel, Monika Singh, Neeraj Kant Sharma, Praveen Kumar Gaur, Pradeep Kumar Sharma
{"title":"Development and evaluation of <i>Hedyotis corymbosa</i> (L.) extract containing phytosomes: a preclinical approach for treatment of neuropathic pain in rodent model.","authors":"Nitin Kumar,&nbsp;Radha Goel,&nbsp;Monika Singh,&nbsp;Neeraj Kant Sharma,&nbsp;Praveen Kumar Gaur,&nbsp;Pradeep Kumar Sharma","doi":"10.1080/02652048.2023.2188938","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The study was aimed to encapsulate <i>Hedyotis corymbosa</i> extract (HCE) into phytosomes to improve its therapeutic efficacy in neuropathic pain by enhancing the bioavailability of chief chemical constituent Hedycoryside -A (HCA).</p><p><strong>Methods: </strong>For preparing phytosomes complexes (F1, F2, and F3), HCE and phospholipids were reacted in disparate ratio. F2 was chosen to assess its therapeutic efficacy in neuropathic pain induced by partial sciatic nerve ligation. Nociceptive threshold and oral bioavailability were also estimated for F2.</p><p><strong>Results: </strong>Particle size, zeta potential and entrapment efficiency for F2 were analysed as 298.1 ± 1.1 nm, -3.92 ± 0.41 mV and 72.12 ± 0.72% respectively. F2 gave enhanced relative bioavailability (158.92%) of HCA along with a greater neuroprotective potential showing a significant antioxidant effect and augmentation (p < 0.05) in nociceptive threshold with the diminution in damage to nerves.</p><p><strong>Conclusion: </strong>F2 is an optimistic formulation for enhancing the HCE delivery for the effective treatment of neuropathic pain.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":"40 3","pages":"186-196"},"PeriodicalIF":3.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microencapsulation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02652048.2023.2188938","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: The study was aimed to encapsulate Hedyotis corymbosa extract (HCE) into phytosomes to improve its therapeutic efficacy in neuropathic pain by enhancing the bioavailability of chief chemical constituent Hedycoryside -A (HCA).

Methods: For preparing phytosomes complexes (F1, F2, and F3), HCE and phospholipids were reacted in disparate ratio. F2 was chosen to assess its therapeutic efficacy in neuropathic pain induced by partial sciatic nerve ligation. Nociceptive threshold and oral bioavailability were also estimated for F2.

Results: Particle size, zeta potential and entrapment efficiency for F2 were analysed as 298.1 ± 1.1 nm, -3.92 ± 0.41 mV and 72.12 ± 0.72% respectively. F2 gave enhanced relative bioavailability (158.92%) of HCA along with a greater neuroprotective potential showing a significant antioxidant effect and augmentation (p < 0.05) in nociceptive threshold with the diminution in damage to nerves.

Conclusion: F2 is an optimistic formulation for enhancing the HCE delivery for the effective treatment of neuropathic pain.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
含叶磷脂体的蛇舌草提取物的开发和评价:用于治疗啮齿动物神经性疼痛模型的临床前方法。
目的:本研究旨在通过提高其主要化学成分荆草苷-A (HCA)的生物利用度,将荆草提取物(HCE)包埋在叶磷脂小体中,以提高其治疗神经性疼痛的疗效。方法:制备磷脂复合物(F1、F2、F3), HCE与磷脂按不同比例反应。选择F2观察其对部分坐骨神经结扎所致神经性疼痛的治疗效果。对F2的伤害阈值和口服生物利用度也进行了估计。结果:F2的粒径为298.1±1.1 nm, zeta电位为-3.92±0.41 mV,包封效率为72.12±0.72%。F2提高了HCA的相对生物利用度(158.92%),同时具有更大的神经保护潜力,显示出显著的抗氧化作用和增强作用(p)结论:F2是一种乐观的配方,可以增强HCE的传递,有效治疗神经性疼痛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of microencapsulation
Journal of microencapsulation 工程技术-工程:化工
CiteScore
6.30
自引率
2.60%
发文量
39
审稿时长
3 months
期刊介绍: The Journal of Microencapsulation is a well-established, peer-reviewed journal dedicated to the publication of original research findings related to the preparation, properties and uses of individually encapsulated novel small particles, as well as significant improvements to tried-and-tested techniques relevant to micro and nano particles and their use in a wide variety of industrial, engineering, pharmaceutical, biotechnology and research applications. Its scope extends beyond conventional microcapsules to all other small particulate systems such as self assembling structures that involve preparative manipulation. The journal covers: Chemistry of encapsulation materials Physics of release through the capsule wall and/or desorption from carrier Techniques of preparation, content and storage Many uses to which microcapsules are put.
期刊最新文献
Her-2 nanobody modified cisplatin nanoparticles for precise chemotherapy of colon cancer. Novel formulation of curcumin-loaded chlorhexidine drug combined with gold nanoparticles for effective therapeutic agent against urinary tract infections. Optimisation of albendazole delivery and assessment of anticancer potential in hepatocellular carcinoma (HepG2 cells) using surface modified nanostructured lipid carriers. Development, QbD-based optimisation, in-vivo pharmacokinetics, and ex-vivo evaluation of Eudragit® RS 100 loaded flurbiprofen nanoparticles for oral drug delivery. Spray-dried chitosan oligosaccharide microparticles with polyvinyl alcohol-based dispersions for improved gefitinib solubility.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1