Ran Tao, Qianyu Zhang, Jialing Duan, Ran Chen, Liyun Yao, Ruiteng Zhang, Gang Dong, Huali Chen
{"title":"Construction and evaluation of an antioxidant synergistic system containing vitamin C and vitamin E.","authors":"Ran Tao, Qianyu Zhang, Jialing Duan, Ran Chen, Liyun Yao, Ruiteng Zhang, Gang Dong, Huali Chen","doi":"10.1080/02652048.2023.2183276","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>The aim of this study is to develop a liposome that could exert unparalleled antioxidant effects. In the present study, a vitamin C (VC)/vitamin E (VE)-co-loaded multivesicular liposome (VCVE-MVL) was constructed.</p><p><strong>Methods: </strong>Vitamins were encapsulated in soybean phosphatidylcholine (SPC) and cholesterol (CHO) by multi-emulsification method. The concentration of VC was determined by Fast Blue method. The concentration of VE was determined by high performance liquid chromatography (HPLC). Vitamin antioxidant capacity in vitro and in vivo was determined using β-carotene bleaching.</p><p><strong>Results: </strong>VCVE-MVL with particle diameter of 848.55 ± 0.29 nm and SPAN of 0.16 ± 0.11 were obtained. The encapsulation efficiency of VC reached 48.51% (w/w)±0.15. Compared with VC/VE solution, VCVE-MVL had a higher permeation efficiency. In addition, the in vitro and ex-vivo antioxidant tests verified the adequate antioxidant activity of VCVE-MVL.</p><p><strong>Conclusions: </strong>In conclusion, the antioxidant synergistic system we constructed and demonstrated its potential applications in the cosmetics industry.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":"40 3","pages":"157-170"},"PeriodicalIF":3.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microencapsulation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02652048.2023.2183276","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Aims: The aim of this study is to develop a liposome that could exert unparalleled antioxidant effects. In the present study, a vitamin C (VC)/vitamin E (VE)-co-loaded multivesicular liposome (VCVE-MVL) was constructed.
Methods: Vitamins were encapsulated in soybean phosphatidylcholine (SPC) and cholesterol (CHO) by multi-emulsification method. The concentration of VC was determined by Fast Blue method. The concentration of VE was determined by high performance liquid chromatography (HPLC). Vitamin antioxidant capacity in vitro and in vivo was determined using β-carotene bleaching.
Results: VCVE-MVL with particle diameter of 848.55 ± 0.29 nm and SPAN of 0.16 ± 0.11 were obtained. The encapsulation efficiency of VC reached 48.51% (w/w)±0.15. Compared with VC/VE solution, VCVE-MVL had a higher permeation efficiency. In addition, the in vitro and ex-vivo antioxidant tests verified the adequate antioxidant activity of VCVE-MVL.
Conclusions: In conclusion, the antioxidant synergistic system we constructed and demonstrated its potential applications in the cosmetics industry.
期刊介绍:
The Journal of Microencapsulation is a well-established, peer-reviewed journal dedicated to the publication of original research findings related to the preparation, properties and uses of individually encapsulated novel small particles, as well as significant improvements to tried-and-tested techniques relevant to micro and nano particles and their use in a wide variety of industrial, engineering, pharmaceutical, biotechnology and research applications. Its scope extends beyond conventional microcapsules to all other small particulate systems such as self assembling structures that involve preparative manipulation.
The journal covers:
Chemistry of encapsulation materials
Physics of release through the capsule wall and/or desorption from carrier
Techniques of preparation, content and storage
Many uses to which microcapsules are put.