Research Progress on TRPA1 in Diseases.

IF 2.3 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Membrane Biology Pub Date : 2023-12-01 Epub Date: 2023-04-11 DOI:10.1007/s00232-023-00277-x
Jiajing Li, Hongfei Zhang, Qian Du, Junyu Gu, Jiangbo Wu, Qi Liu, Zhuo Li, Ting Zhang, Jingyu Xu, Rui Xie
{"title":"Research Progress on TRPA1 in Diseases.","authors":"Jiajing Li, Hongfei Zhang, Qian Du, Junyu Gu, Jiangbo Wu, Qi Liu, Zhuo Li, Ting Zhang, Jingyu Xu, Rui Xie","doi":"10.1007/s00232-023-00277-x","DOIUrl":null,"url":null,"abstract":"<p><p>For a long time, the physiological activity of TRP ion channels and the response to various stimuli have been the focus of attention, and the physiological functions mediated by ion channels have subtle links with the occurrence of various diseases. Our group has been engaged in the study of ion channels. In recent years, the report rate of TRPA1, the only member of the TRPA subfamily in the newly described TRP channel, has been very high. TRPA1 channels are not only abundantly expressed in peptidergic nociceptors but are also found in many nonneuronal cell types and tissues, and through the regulation of Ca<sup>2+</sup> influx, various neuropeptides and signaling pathways are involved in the regulation of nerves, respiration, circulation, and various diseases and inflammation throughout the body. In this review, we mainly summarize the effects of TRPA1 on various systems in the body, which not only allows us to have a more systematic and comprehensive understanding of TRPA1 but also facilitates more in-depth research on it in the future.</p>","PeriodicalId":50129,"journal":{"name":"Journal of Membrane Biology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10667463/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00232-023-00277-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

For a long time, the physiological activity of TRP ion channels and the response to various stimuli have been the focus of attention, and the physiological functions mediated by ion channels have subtle links with the occurrence of various diseases. Our group has been engaged in the study of ion channels. In recent years, the report rate of TRPA1, the only member of the TRPA subfamily in the newly described TRP channel, has been very high. TRPA1 channels are not only abundantly expressed in peptidergic nociceptors but are also found in many nonneuronal cell types and tissues, and through the regulation of Ca2+ influx, various neuropeptides and signaling pathways are involved in the regulation of nerves, respiration, circulation, and various diseases and inflammation throughout the body. In this review, we mainly summarize the effects of TRPA1 on various systems in the body, which not only allows us to have a more systematic and comprehensive understanding of TRPA1 but also facilitates more in-depth research on it in the future.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TRPA1在疾病中的研究进展
长期以来,TRP离子通道的生理活性和对各种刺激的反应一直是人们关注的焦点,离子通道介导的生理功能与各种疾病的发生有着微妙的联系。我们组一直从事离子通道的研究。近年来,新描述的TRP通道中唯一的TRPA亚家族成员TRPA1的报道率非常高。TRPA1通道不仅在多肽性伤害感受器中大量表达,而且在许多非神经元细胞类型和组织中也有发现,通过调节Ca2+内流,各种神经肽和信号通路参与全身神经、呼吸、循环和各种疾病和炎症的调节。在这篇综述中,我们主要总结了TRPA1对机体各系统的作用,这不仅可以让我们对TRPA1有一个更系统和全面的了解,也有助于我们在未来对其进行更深入的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Membrane Biology
Journal of Membrane Biology 生物-生化与分子生物学
CiteScore
4.80
自引率
4.20%
发文量
63
审稿时长
6-12 weeks
期刊介绍: The Journal of Membrane Biology is dedicated to publishing high-quality science related to membrane biology, biochemistry and biophysics. In particular, we welcome work that uses modern experimental or computational methods including but not limited to those with microscopy, diffraction, NMR, computer simulations, or biochemistry aimed at membrane associated or membrane embedded proteins or model membrane systems. These methods might be applied to study topics like membrane protein structure and function, membrane mediated or controlled signaling mechanisms, cell-cell communication via gap junctions, the behavior of proteins and lipids based on monolayer or bilayer systems, or genetic and regulatory mechanisms controlling membrane function. Research articles, short communications and reviews are all welcome. We also encourage authors to consider publishing ''negative'' results where experiments or simulations were well performed, but resulted in unusual or unexpected outcomes without obvious explanations. While we welcome connections to clinical studies, submissions that are primarily clinical in nature or that fail to make connections to the basic science issues of membrane structure, chemistry and function, are not appropriate for the journal. In a similar way, studies that are primarily descriptive and narratives of assays in a clinical or population study are best published in other journals. If you are not certain, it is entirely appropriate to write to us to inquire if your study is a good fit for the journal.
期刊最新文献
The Role of the Swollen State in Cell Proliferation. Sphingomyelin Inhibits Hydrolytic Activity of Heterodimeric PLA2 in Model Myelin Membranes: Pharmacological Relevance. Postsynaptic Density Proteins and Their Role in the Trafficking of Group I Metabotropic Glutamate Receptors. Voltage Gated Ion Channels and Sleep. Early Events in β2AR Dimer Dynamics Mediated by Activation-Related Microswitches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1