An Overview of In Vitro Biological Neural Networks for Robot Intelligence.

IF 10.5 Q1 ENGINEERING, BIOMEDICAL Cyborg and bionic systems (Washington, D.C.) Pub Date : 2023-01-01 DOI:10.34133/cbsystems.0001
Zhe Chen, Qian Liang, Zihou Wei, Xie Chen, Qing Shi, Zhiqiang Yu, Tao Sun
{"title":"An Overview of In Vitro Biological Neural Networks for Robot Intelligence.","authors":"Zhe Chen,&nbsp;Qian Liang,&nbsp;Zihou Wei,&nbsp;Xie Chen,&nbsp;Qing Shi,&nbsp;Zhiqiang Yu,&nbsp;Tao Sun","doi":"10.34133/cbsystems.0001","DOIUrl":null,"url":null,"abstract":"<p><p>In vitro biological neural networks (BNNs) interconnected with robots, so-called BNN-based neurorobotic systems, can interact with the external world, so that they can present some preliminary intelligent behaviors, including learning, memory, robot control, etc. This work aims to provide a comprehensive overview of the intelligent behaviors presented by the BNN-based neurorobotic systems, with a particular focus on those related to robot intelligence. In this work, we first introduce the necessary biological background to understand the 2 characteristics of the BNNs: nonlinear computing capacity and network plasticity. Then, we describe the typical architecture of the BNN-based neurorobotic systems and outline the mainstream techniques to realize such an architecture from 2 aspects: from robots to BNNs and from BNNs to robots. Next, we separate the intelligent behaviors into 2 parts according to whether they rely solely on the computing capacity (computing capacity-dependent) or depend also on the network plasticity (network plasticity-dependent), which are then expounded respectively, with a focus on those related to the realization of robot intelligence. Finally, the development trends and challenges of the BNN-based neurorobotic systems are discussed.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"4 ","pages":"0001"},"PeriodicalIF":10.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10076061/pdf/","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cyborg and bionic systems (Washington, D.C.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/cbsystems.0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 7

Abstract

In vitro biological neural networks (BNNs) interconnected with robots, so-called BNN-based neurorobotic systems, can interact with the external world, so that they can present some preliminary intelligent behaviors, including learning, memory, robot control, etc. This work aims to provide a comprehensive overview of the intelligent behaviors presented by the BNN-based neurorobotic systems, with a particular focus on those related to robot intelligence. In this work, we first introduce the necessary biological background to understand the 2 characteristics of the BNNs: nonlinear computing capacity and network plasticity. Then, we describe the typical architecture of the BNN-based neurorobotic systems and outline the mainstream techniques to realize such an architecture from 2 aspects: from robots to BNNs and from BNNs to robots. Next, we separate the intelligent behaviors into 2 parts according to whether they rely solely on the computing capacity (computing capacity-dependent) or depend also on the network plasticity (network plasticity-dependent), which are then expounded respectively, with a focus on those related to the realization of robot intelligence. Finally, the development trends and challenges of the BNN-based neurorobotic systems are discussed.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于机器人智能的体外生物神经网络综述。
与机器人互联的体外生物神经网络(bnn),即所谓的基于bnn的神经机器人系统,可以与外部世界相互作用,使其呈现一些初步的智能行为,包括学习、记忆、机器人控制等。这项工作旨在全面概述基于bnn的神经机器人系统所呈现的智能行为,并特别关注与机器人智能相关的行为。在这项工作中,我们首先介绍了必要的生物学背景来理解bnn的两个特征:非线性计算能力和网络可塑性。然后,我们描述了基于神经网络的神经机器人系统的典型架构,并从机器人到神经网络和神经网络到机器人两个方面概述了实现这种架构的主流技术。接下来,我们将智能行为分为单独依赖计算能力(计算能力依赖)和同时依赖网络可塑性(网络可塑性依赖)两部分,分别进行阐述,重点讨论与机器人智能实现相关的智能行为。最后,讨论了基于神经网络的神经机器人系统的发展趋势和面临的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
审稿时长
21 weeks
期刊最新文献
Multi-Section Magnetic Soft Robot with Multirobot Navigation System for Vasculature Intervention. Advances in Biointegrated Wearable and Implantable Optoelectronic Devices for Cardiac Healthcare. Sensors and Devices Guided by Artificial Intelligence for Personalized Pain Medicine. Modeling Grid Cell Distortions with a Grid Cell Calibration Mechanism. Federated Abnormal Heart Sound Detection with Weak to No Labels.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1