Endothelial to Mesenchymal Transition in Health and Disease.

IF 15.7 1区 医学 Q1 PHYSIOLOGY Annual review of physiology Pub Date : 2023-02-10 DOI:10.1146/annurev-physiol-032222-080806
Yang Xu, Jason C Kovacic
{"title":"Endothelial to Mesenchymal Transition in Health and Disease.","authors":"Yang Xu,&nbsp;Jason C Kovacic","doi":"10.1146/annurev-physiol-032222-080806","DOIUrl":null,"url":null,"abstract":"<p><p>The endothelium is one of the largest organ systems in the body, and data continue to emerge regarding the importance of endothelial cell (EC) dysfunction in vascular aging and a range of cardiovascular diseases (CVDs). Over the last two decades and as a process intimately related to EC dysfunction, an increasing number of studies have also implicated endothelial to mesenchymal transition (EndMT) as a potentially disease-causal pathobiologic process that is involved in a multitude of differing CVDs. However, EndMT is also involved in physiologic processes (e.g., cardiac development), and transient EndMT may contribute to vascular regeneration in certain contexts. Given that EndMT involves a major alteration in the EC-specific molecular program, and that it potentially contributes to CVD pathobiology, the clinical translation opportunities are significant, but further molecular and translational research is needed to see these opportunities realized.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":"85 ","pages":"245-267"},"PeriodicalIF":15.7000,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-physiol-032222-080806","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 13

Abstract

The endothelium is one of the largest organ systems in the body, and data continue to emerge regarding the importance of endothelial cell (EC) dysfunction in vascular aging and a range of cardiovascular diseases (CVDs). Over the last two decades and as a process intimately related to EC dysfunction, an increasing number of studies have also implicated endothelial to mesenchymal transition (EndMT) as a potentially disease-causal pathobiologic process that is involved in a multitude of differing CVDs. However, EndMT is also involved in physiologic processes (e.g., cardiac development), and transient EndMT may contribute to vascular regeneration in certain contexts. Given that EndMT involves a major alteration in the EC-specific molecular program, and that it potentially contributes to CVD pathobiology, the clinical translation opportunities are significant, but further molecular and translational research is needed to see these opportunities realized.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
健康与疾病中的内皮细胞向间充质细胞转化。
内皮是人体最大的器官系统之一,关于内皮细胞(EC)功能障碍在血管老化和一系列心血管疾病(cvd)中的重要性的数据不断涌现。在过去的二十年中,作为一个与EC功能障碍密切相关的过程,越来越多的研究也表明内皮细胞向间充质细胞转化(EndMT)是一个潜在的疾病致病病理过程,涉及多种不同的cvd。然而,EndMT也参与生理过程(如心脏发育),在某些情况下,短暂的EndMT可能有助于血管再生。鉴于EndMT涉及ec特异性分子程序的重大改变,并且它可能有助于CVD病理生物学,临床翻译机会是重要的,但需要进一步的分子和翻译研究来实现这些机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual review of physiology
Annual review of physiology 医学-生理学
CiteScore
35.60
自引率
0.00%
发文量
41
期刊介绍: Since 1939, the Annual Review of Physiology has been highlighting significant developments in animal physiology. The journal covers diverse areas, including cardiovascular physiology, cell physiology, ecological, evolutionary, and comparative physiology, endocrinology, gastrointestinal physiology, neurophysiology, renal and electrolyte physiology, respiratory physiology, and special topics.
期刊最新文献
From Muscle-Based Nonshivering Thermogenesis to Malignant Hyperthermia in Mammals. Inositol 1,4,5-Trisphosphate Receptor Mutations Associated with Human Disease: Insights into Receptor Function and Dysfunction. Sex, Gender, and COPD. Store-Operated Calcium Channels in the Nervous System. A Mechanistic Rationale for Incretin-Based Therapeutics in the Management of Obesity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1