Using newly optimized genetic tools to probe Strongyloides sensory behaviors

IF 1.4 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular and biochemical parasitology Pub Date : 2022-07-01 DOI:10.1016/j.molbiopara.2022.111491
Patricia Mendez , Breanna Walsh , Elissa A. Hallem
{"title":"Using newly optimized genetic tools to probe Strongyloides sensory behaviors","authors":"Patricia Mendez ,&nbsp;Breanna Walsh ,&nbsp;Elissa A. Hallem","doi":"10.1016/j.molbiopara.2022.111491","DOIUrl":null,"url":null,"abstract":"<div><p>The oft-neglected human-parasitic threadworm, <em>Strongyloides stercoralis</em>, infects roughly eight percent of the global population, placing disproportionate medical and economic burden upon marginalized communities. While current chemotherapies treat strongyloidiasis, disease recrudescence and the looming threat of anthelminthic resistance necessitate novel strategies for nematode control. Throughout its life cycle, <em>S. stercoralis</em> relies upon sensory cues to aid in environmental navigation and coordinate developmental progression. Odorants, tastants, gases, and temperature have been shown to shape parasite behaviors that drive host seeking and infectivity; however, many of these sensory behaviors remain poorly understood, and their underlying molecular and neural mechanisms are largely uncharacterized. Disruption of sensory circuits essential to parasitism presents a promising strategy for future interventions. In this review, we describe our current understanding of sensory behaviors – namely olfactory, gustatory, gas sensing, and thermosensory behaviors – in <em>Strongyloides</em> spp. We also highlight the ever-growing cache of genetic tools optimized for use in <em>Strongyloides</em> that have facilitated these findings, including transgenesis, CRISPR/Cas9-mediated mutagenesis, RNAi, chemogenetic neuronal silencing, and the use of fluorescent biosensors to measure neuronal activity. Bolstered by these tools, we are poised to enter an era of rapid discovery in <em>Strongyloides</em> sensory neurobiology, which has the potential to shape pioneering advances in the prevention and treatment of strongyloidiasis.</p></div>","PeriodicalId":18721,"journal":{"name":"Molecular and biochemical parasitology","volume":"250 ","pages":"Article 111491"},"PeriodicalIF":1.4000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9339661/pdf/","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and biochemical parasitology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166685122000457","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 5

Abstract

The oft-neglected human-parasitic threadworm, Strongyloides stercoralis, infects roughly eight percent of the global population, placing disproportionate medical and economic burden upon marginalized communities. While current chemotherapies treat strongyloidiasis, disease recrudescence and the looming threat of anthelminthic resistance necessitate novel strategies for nematode control. Throughout its life cycle, S. stercoralis relies upon sensory cues to aid in environmental navigation and coordinate developmental progression. Odorants, tastants, gases, and temperature have been shown to shape parasite behaviors that drive host seeking and infectivity; however, many of these sensory behaviors remain poorly understood, and their underlying molecular and neural mechanisms are largely uncharacterized. Disruption of sensory circuits essential to parasitism presents a promising strategy for future interventions. In this review, we describe our current understanding of sensory behaviors – namely olfactory, gustatory, gas sensing, and thermosensory behaviors – in Strongyloides spp. We also highlight the ever-growing cache of genetic tools optimized for use in Strongyloides that have facilitated these findings, including transgenesis, CRISPR/Cas9-mediated mutagenesis, RNAi, chemogenetic neuronal silencing, and the use of fluorescent biosensors to measure neuronal activity. Bolstered by these tools, we are poised to enter an era of rapid discovery in Strongyloides sensory neurobiology, which has the potential to shape pioneering advances in the prevention and treatment of strongyloidiasis.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用新优化的遗传工具探测圆线虫的感觉行为
经常被忽视的人类寄生线虫粪圆线虫感染了全球大约8%的人口,给边缘社区带来了不成比例的医疗和经济负担。虽然目前的化疗治疗圆形线虫病,疾病的复发和迫在眉睫的威胁的寄生虫耐药性需要新的策略来控制线虫。在整个生命周期中,粪螺依赖于感官线索来帮助环境导航和协调发育进程。气味、味剂、气体和温度已被证明可以塑造寄生虫的行为,从而驱动寄主寻找和传染性;然而,许多这些感觉行为仍然知之甚少,其潜在的分子和神经机制在很大程度上是未知的。破坏寄生所必需的感觉回路是未来干预的一个有希望的策略。在这篇综述中,我们描述了我们目前对圆线虫的感觉行为的理解,即嗅觉、味觉、气体传感和热传感行为。我们还强调了用于圆线虫的遗传工具的不断增长的优化,这些工具促进了这些发现,包括转基因、CRISPR/ cas9介导的突变、RNAi、化学发生神经元沉默,以及使用荧光生物传感器来测量神经元活动。在这些工具的支持下,我们准备进入一个快速发现类圆线虫感觉神经生物学的时代,这有可能在预防和治疗类圆线虫病方面取得开创性进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
51
审稿时长
63 days
期刊介绍: The journal provides a medium for rapid publication of investigations of the molecular biology and biochemistry of parasitic protozoa and helminths and their interactions with both the definitive and intermediate host. The main subject areas covered are: • the structure, biosynthesis, degradation, properties and function of DNA, RNA, proteins, lipids, carbohydrates and small molecular-weight substances • intermediary metabolism and bioenergetics • drug target characterization and the mode of action of antiparasitic drugs • molecular and biochemical aspects of membrane structure and function • host-parasite relationships that focus on the parasite, particularly as related to specific parasite molecules. • analysis of genes and genome structure, function and expression • analysis of variation in parasite populations relevant to genetic exchange, pathogenesis, drug and vaccine target characterization, and drug resistance. • parasite protein trafficking, organelle biogenesis, and cellular structure especially with reference to the roles of specific molecules • parasite programmed cell death, development, and cell division at the molecular level.
期刊最新文献
AUK3 is required for faithful nuclear segregation in the bloodstream form of Trypanosoma brucei. Glucantime and quercetin electrospun nanofiber membranes: Fabrication and their evaluation as dressing for cutaneous leishmaniasis. Editorial Board Designing a multi-epitope subunit vaccine against Toxoplasma gondii through reverse vaccinology approach Characterization of two phosphatase 2 C domain-containing proteins PPM2A and PPM2B in Toxoplasma gondii
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1