{"title":"Anti-oxidative properties of nanocrocin in Zearalenone induced toxicity on Hek293 cell; The novel formulation and cellular assessment.","authors":"Fatemeh Ghafari, Zohre Sadeghian, Akram Oftadeh Harsin, Sodabe Khodabandelo, Akram Ranjbar","doi":"10.1177/09603271231169911","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Zearalenone (ZEA) is a mycotoxin produced by fungi and induces cytotoxicity by the generation of reactive oxygen species. The aim of this study was to evaluate and compare the nephroprotective effects of crocin and nano-crocin against ZEA-induced toxicity in HEK293 cell line via modulation of oxidative stress and special formulation to make nano-crocin.</p><p><strong>Method: </strong>Nano-crocin physicochemical properties, such as size, load, appearance, and drug release profile were determined. Also, the viability of intoxicated HEK293 cells was evaluated by MTT assay. Furthermore, lactate dehydrogenase lipid Peroxidation (LPO), and oxidative stress biomarkers were measured.</p><p><strong>Result: </strong>The best nano-crocin formulation with superior entrapment effectiveness (54.66 ± 6.02), more significant drug loading (1.89 ± 0.01), better zeta potential (-23.4 ± 2.844), and smaller particle size (140.3 ± 18.0 nm) was chosen. This study showed that treatment with crocin and nano-crocin in ZEA-induced cells, significantly decreased LDH and LPO levels and increased superoxide dismutase (SOD), catalase (CAT) activities, and total antioxidant capacity (TAC) levels compared to the control group. Moreover, nano-crocin had a more curative effect against oxidative stress than crocin.</p><p><strong>Conclusion: </strong>Niosomal structure of crocin, when administered with the special formulation, may be more beneficial in reducing ZEA-induced in vitro toxicity than conventional crocin.</p>","PeriodicalId":13181,"journal":{"name":"Human & Experimental Toxicology","volume":"42 ","pages":"9603271231169911"},"PeriodicalIF":2.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human & Experimental Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09603271231169911","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Zearalenone (ZEA) is a mycotoxin produced by fungi and induces cytotoxicity by the generation of reactive oxygen species. The aim of this study was to evaluate and compare the nephroprotective effects of crocin and nano-crocin against ZEA-induced toxicity in HEK293 cell line via modulation of oxidative stress and special formulation to make nano-crocin.
Method: Nano-crocin physicochemical properties, such as size, load, appearance, and drug release profile were determined. Also, the viability of intoxicated HEK293 cells was evaluated by MTT assay. Furthermore, lactate dehydrogenase lipid Peroxidation (LPO), and oxidative stress biomarkers were measured.
Result: The best nano-crocin formulation with superior entrapment effectiveness (54.66 ± 6.02), more significant drug loading (1.89 ± 0.01), better zeta potential (-23.4 ± 2.844), and smaller particle size (140.3 ± 18.0 nm) was chosen. This study showed that treatment with crocin and nano-crocin in ZEA-induced cells, significantly decreased LDH and LPO levels and increased superoxide dismutase (SOD), catalase (CAT) activities, and total antioxidant capacity (TAC) levels compared to the control group. Moreover, nano-crocin had a more curative effect against oxidative stress than crocin.
Conclusion: Niosomal structure of crocin, when administered with the special formulation, may be more beneficial in reducing ZEA-induced in vitro toxicity than conventional crocin.
期刊介绍:
Human and Experimental Toxicology (HET), an international peer reviewed journal, is dedicated to publishing preclinical and clinical original research papers and in-depth reviews that comprehensively cover studies of functional, biochemical and structural disorders in toxicology. The principal aim of the HET is to publish timely high impact hypothesis driven scholarly work with an international scope. The journal publishes on: Structural, functional, biochemical, and molecular effects of toxic agents; Studies that address mechanisms/modes of toxicity; Safety evaluation of novel chemical, biotechnologically-derived products, and nanomaterials for human health assessment including statistical and mechanism-based approaches; Novel methods or approaches to research on animal and human tissues (medical and veterinary patients) investigating functional, biochemical and structural disorder; in vitro techniques, particularly those supporting alternative methods