{"title":"The PI3K-AKT pathway: A plausible therapeutic target in Parkinson's disease","authors":"Ahsas Goyal (Assistant Professor), Anant Agrawal, Aanchal Verma, Nandini Dubey","doi":"10.1016/j.yexmp.2022.104846","DOIUrl":null,"url":null,"abstract":"<div><p>Parkinson's disease is a common progressive and multifactorial neurodegenerative disease, characterized by the loss of midbrain dopaminergic neurons. Numerous pathological processes including, inflammation, oxidative stress, mitochondrial dysfunction, neurotransmitter imbalance, and apoptosis as well as genetic factors may lead to neuronal degeneration. With the emergence of aging population, the health problem and economic burden caused by PD also increase. Phosphatidylinositol 3-kinases-protein kinase B (PI3K-AKT) signaling pathway regulates signal transduction and biological processes such as cell proliferation, apoptosis and metabolism. According to reports, it regulates neurotoxicity and mediates the survival of neurons. Accumulating evidences indicate that some natural products can play a neuroprotective role by activating PI3K-AKT pathway, providing an effective resource for the discovery of potential therapeutic drugs. The current review provides an overview of the PI3K-AKT signaling pathway and review the relationship between this signaling pathway and PD.</p></div>","PeriodicalId":12176,"journal":{"name":"Experimental and molecular pathology","volume":"129 ","pages":"Article 104846"},"PeriodicalIF":2.8000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental and molecular pathology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014480022001095","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 6
Abstract
Parkinson's disease is a common progressive and multifactorial neurodegenerative disease, characterized by the loss of midbrain dopaminergic neurons. Numerous pathological processes including, inflammation, oxidative stress, mitochondrial dysfunction, neurotransmitter imbalance, and apoptosis as well as genetic factors may lead to neuronal degeneration. With the emergence of aging population, the health problem and economic burden caused by PD also increase. Phosphatidylinositol 3-kinases-protein kinase B (PI3K-AKT) signaling pathway regulates signal transduction and biological processes such as cell proliferation, apoptosis and metabolism. According to reports, it regulates neurotoxicity and mediates the survival of neurons. Accumulating evidences indicate that some natural products can play a neuroprotective role by activating PI3K-AKT pathway, providing an effective resource for the discovery of potential therapeutic drugs. The current review provides an overview of the PI3K-AKT signaling pathway and review the relationship between this signaling pathway and PD.
期刊介绍:
Under new editorial leadership, Experimental and Molecular Pathology presents original articles on disease processes in relation to structural and biochemical alterations in mammalian tissues and fluids and on the application of newer techniques of molecular biology to problems of pathology in humans and other animals. The journal also publishes selected interpretive synthesis reviews by bench level investigators working at the "cutting edge" of contemporary research in pathology. In addition, special thematic issues present original research reports that unravel some of Nature''s most jealously guarded secrets on the pathologic basis of disease.
Research Areas include: Stem cells; Neoangiogenesis; Molecular diagnostics; Polymerase chain reaction; In situ hybridization; DNA sequencing; Cell receptors; Carcinogenesis; Pathobiology of neoplasia; Complex infectious diseases; Transplantation; Cytokines; Flow cytomeric analysis; Inflammation; Cellular injury; Immunology and hypersensitivity; Athersclerosis.