Perspectives on optimizing local delivery of drugs to peripheral nerves using mathematical models.

IF 4.6 3区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL WIREs Mechanisms of Disease Pub Date : 2023-03-01 Epub Date: 2023-01-09 DOI:10.1002/wsbm.1593
Simao Laranjeira, Victoria H Roberton, James B Phillips, Rebecca J Shipley
{"title":"Perspectives on optimizing local delivery of drugs to peripheral nerves using mathematical models.","authors":"Simao Laranjeira, Victoria H Roberton, James B Phillips, Rebecca J Shipley","doi":"10.1002/wsbm.1593","DOIUrl":null,"url":null,"abstract":"<p><p>Drug therapies for treating peripheral nerve injury repair have shown significant promise in preclinical studies. Despite this, drug treatments are not used routinely clinically to treat patients with peripheral nerve injuries. Drugs delivered systemically are often associated with adverse effects to other tissues and organs; it remains challenging to predict the effective concentration needed at an injured nerve and the appropriate delivery strategy. Local drug delivery approaches are being developed to mitigate this, for example via injections or biomaterial-mediated release. We propose the integration of mathematical modeling into the development of local drug delivery protocols for peripheral nerve injury repair. Mathematical models have the potential to inform understanding of the different transport mechanisms at play, as well as quantitative predictions around the efficacy of individual local delivery protocols. We discuss existing approaches in the literature, including drawing from other research fields, and present a process for taking forward an integrated mathematical-experimental approach to accelerate local drug delivery approaches for peripheral nerve injury repair. This article is categorized under: Neurological Diseases > Molecular and Cellular Physiology Neurological Diseases > Computational Models Neurological Diseases > Biomedical Engineering.</p>","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":"15 2","pages":"e1593"},"PeriodicalIF":4.6000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10909486/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WIREs Mechanisms of Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/wsbm.1593","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Drug therapies for treating peripheral nerve injury repair have shown significant promise in preclinical studies. Despite this, drug treatments are not used routinely clinically to treat patients with peripheral nerve injuries. Drugs delivered systemically are often associated with adverse effects to other tissues and organs; it remains challenging to predict the effective concentration needed at an injured nerve and the appropriate delivery strategy. Local drug delivery approaches are being developed to mitigate this, for example via injections or biomaterial-mediated release. We propose the integration of mathematical modeling into the development of local drug delivery protocols for peripheral nerve injury repair. Mathematical models have the potential to inform understanding of the different transport mechanisms at play, as well as quantitative predictions around the efficacy of individual local delivery protocols. We discuss existing approaches in the literature, including drawing from other research fields, and present a process for taking forward an integrated mathematical-experimental approach to accelerate local drug delivery approaches for peripheral nerve injury repair. This article is categorized under: Neurological Diseases > Molecular and Cellular Physiology Neurological Diseases > Computational Models Neurological Diseases > Biomedical Engineering.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用数学模型优化外周神经局部给药的视角。
在临床前研究中,治疗周围神经损伤修复的药物疗法已显示出巨大的前景。尽管如此,药物疗法并未在临床上常规用于治疗周围神经损伤患者。全身给药通常会对其他组织和器官产生不良影响;预测损伤神经所需的有效浓度和适当的给药策略仍具有挑战性。目前正在开发局部给药方法来缓解这一问题,例如通过注射或生物材料介导的释放。我们建议将数学建模融入周围神经损伤修复局部给药方案的开发中。数学模型有可能为理解不同的传输机制提供信息,并对单个局部给药方案的疗效进行定量预测。我们讨论了文献中的现有方法,包括借鉴其他研究领域的方法,并提出了一种推进数学-实验综合方法的流程,以加速周围神经损伤修复的局部给药方法。本文归类于神经系统疾病 > 分子与细胞生理学 神经系统疾病 > 计算模型 神经系统疾病 > 生物医学工程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
WIREs Mechanisms of Disease
WIREs Mechanisms of Disease MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
11.40
自引率
0.00%
发文量
45
期刊最新文献
Uncovering the Embryonic Origins of Duchenne Muscular Dystrophy. Advances in understanding immune homeostasis in latent tuberculosis infection. SLC40A1 in iron metabolism, ferroptosis, and disease: A review. The yeast-human coevolution: Fungal transition from passengers, colonizers, and invaders. Ascomycetes yeasts: The hidden part of human microbiome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1