{"title":"Micall2 Is Responsible for the Malignancy of Clear Cell Renal Cell Carcinoma.","authors":"Xianyou Zeng, Hongquan Wang, Jia Yang, Jing Hu","doi":"10.33160/yam.2023.02.021","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>There lacks a sufficient research on the tumorigenesis of clear cell renal cell carcinoma (ccRCC), causing that the prognosis of ccRCC was not effectively improved. Micall2 contributes to the malignancy of cancer. Moreover, Micall2 is considered a typical cell mobility-promoting factor. However, the relationship between Micall2 and ccRCC malignancy is unknown.</p><p><strong>Methods: </strong>In this study, we first investigated the expression patterns of Micall2 in ccRCC tissues and cell lines. Next, we explored the <i>in vitro</i> and <i>in vivo</i> roles of Micall2 in ccRCC tumorigenesis based on ccRCC cell lines with different Micall2 expression and gene manipulation assays.</p><p><strong>Results: </strong>Our study showed that ccRCC tissues and cell lines expressed higher level of Micall2 than paracancerous tissues and normal renal tubular epithelial cell, and Micall2 expression was overexpressed on cancerous tissue with significant metastasis and enlargement. Among three ccRCC cell lines, the expression of Micall2 was the highest in 786-O cells and the lowest in CAKI-1 cells. Moreover, 786-O cells showed the highest malignancy <i>in vitro</i> and <i>in vivo</i> (including proliferation, migration, invasion, reduced E-cadherin expression and tumorigenicity of nude mice <i>in vivo</i>), while CAKI-1 cells showed the contrary results. Furthermore, the upregulated Micall2 by Gene overexpression promoted the proliferation, migration and invasion of ccRCC cells while the downregulated Micall2 by Gene silencing showed the opposite effect.</p><p><strong>Conclusion: </strong>Micall2, as a pro-tumorigenic gene marker of ccRCC, contributes the malignancy of ccRCC.</p>","PeriodicalId":23795,"journal":{"name":"Yonago acta medica","volume":"66 1","pages":"171-179"},"PeriodicalIF":0.9000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9937966/pdf/yam-66-171.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Yonago acta medica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.33160/yam.2023.02.021","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 1
Abstract
Background: There lacks a sufficient research on the tumorigenesis of clear cell renal cell carcinoma (ccRCC), causing that the prognosis of ccRCC was not effectively improved. Micall2 contributes to the malignancy of cancer. Moreover, Micall2 is considered a typical cell mobility-promoting factor. However, the relationship between Micall2 and ccRCC malignancy is unknown.
Methods: In this study, we first investigated the expression patterns of Micall2 in ccRCC tissues and cell lines. Next, we explored the in vitro and in vivo roles of Micall2 in ccRCC tumorigenesis based on ccRCC cell lines with different Micall2 expression and gene manipulation assays.
Results: Our study showed that ccRCC tissues and cell lines expressed higher level of Micall2 than paracancerous tissues and normal renal tubular epithelial cell, and Micall2 expression was overexpressed on cancerous tissue with significant metastasis and enlargement. Among three ccRCC cell lines, the expression of Micall2 was the highest in 786-O cells and the lowest in CAKI-1 cells. Moreover, 786-O cells showed the highest malignancy in vitro and in vivo (including proliferation, migration, invasion, reduced E-cadherin expression and tumorigenicity of nude mice in vivo), while CAKI-1 cells showed the contrary results. Furthermore, the upregulated Micall2 by Gene overexpression promoted the proliferation, migration and invasion of ccRCC cells while the downregulated Micall2 by Gene silencing showed the opposite effect.
Conclusion: Micall2, as a pro-tumorigenic gene marker of ccRCC, contributes the malignancy of ccRCC.
期刊介绍:
Yonago Acta Medica (YAM) is an electronic journal specializing in medical sciences, published by Tottori University Medical Press, 86 Nishi-cho, Yonago 683-8503, Japan.
The subject areas cover the following: molecular/cell biology; biochemistry; basic medicine; clinical medicine; veterinary medicine; clinical nutrition and food sciences; medical engineering; nursing sciences; laboratory medicine; clinical psychology; medical education.
Basically, contributors are limited to members of Tottori University and Tottori University Hospital. Researchers outside the above-mentioned university community may also submit papers on the recommendation of a professor, an associate professor, or a junior associate professor at this university community.
Articles are classified into four categories: review articles, original articles, patient reports, and short communications.