{"title":"Electrospun Chitosan-based Fibers for Wound Healing Applications.","authors":"Sameer Sapkota, Shih-Feng Chou","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Chitosan, a natural-occurring biopolymer, is biocompatible to tissues with excellent antibacterial and hemostatic properties, which makes it a great candidate among wound dressing materials. In this paper, electrospun fiber-based wound dressings from blend chitosan and/or polyethylene oxide (PEO) and/or polyvinyl alcohol (PVA) fibers were reviewed. The incorporation of these water-soluble copolymers allows the entanglement of the rigid chitosan molecular chains during electrospinning leading to the production of continuous nonwoven fibers having average diameters ranging from several tenths to hundredths of nanometers. Increasing chitosan composition in the fibers improves the bulk mechanical strength of the fiber mats due to the rigid molecular structure of chitosan. The nano-sized pores within the fiber mats promote permeability of the fiber dressings, which further enhances the exchange of oxygen and nutrients with outside environment. In addition, the porous fiber mat structure facilitates the absorption of wound exudates while reducing the possibility of bacterial infections. Several studies in antibacterial and anti-inflammatory responses of chitosan-based electrospun fibers were discussed in this short review. More importantly, inclusions of small molecule drugs and/or biological agents are possible in chitosan-based electrospun fibers, which provide a multi-purpose treatment capability for wound healing applications.</p>","PeriodicalId":73619,"journal":{"name":"Journal of biomaterials","volume":"4 2","pages":"51-57"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8159176/pdf/nihms-1678585.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomaterials","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Chitosan, a natural-occurring biopolymer, is biocompatible to tissues with excellent antibacterial and hemostatic properties, which makes it a great candidate among wound dressing materials. In this paper, electrospun fiber-based wound dressings from blend chitosan and/or polyethylene oxide (PEO) and/or polyvinyl alcohol (PVA) fibers were reviewed. The incorporation of these water-soluble copolymers allows the entanglement of the rigid chitosan molecular chains during electrospinning leading to the production of continuous nonwoven fibers having average diameters ranging from several tenths to hundredths of nanometers. Increasing chitosan composition in the fibers improves the bulk mechanical strength of the fiber mats due to the rigid molecular structure of chitosan. The nano-sized pores within the fiber mats promote permeability of the fiber dressings, which further enhances the exchange of oxygen and nutrients with outside environment. In addition, the porous fiber mat structure facilitates the absorption of wound exudates while reducing the possibility of bacterial infections. Several studies in antibacterial and anti-inflammatory responses of chitosan-based electrospun fibers were discussed in this short review. More importantly, inclusions of small molecule drugs and/or biological agents are possible in chitosan-based electrospun fibers, which provide a multi-purpose treatment capability for wound healing applications.