Metabolic Switching of Cultured Mesenchymal Stem Cells Creates Super Mitochondria in Rescuing Ischemic Neurons.

IF 3.9 4区 医学 Q2 NEUROSCIENCES NeuroMolecular Medicine Pub Date : 2023-03-01 DOI:10.1007/s12017-022-08720-3
Anna Gorsky, Molly Monsour, Hung Nguyen, Vanessa Castelli, Jea-Young Lee, Cesar V Borlongan
{"title":"Metabolic Switching of Cultured Mesenchymal Stem Cells Creates Super Mitochondria in Rescuing Ischemic Neurons.","authors":"Anna Gorsky,&nbsp;Molly Monsour,&nbsp;Hung Nguyen,&nbsp;Vanessa Castelli,&nbsp;Jea-Young Lee,&nbsp;Cesar V Borlongan","doi":"10.1007/s12017-022-08720-3","DOIUrl":null,"url":null,"abstract":"<p><p>Transfer of healthy mitochondria from mesenchymal stem cells (MSCs) to ischemic neurons represents a potent stroke therapeutic. MSCs were grown under ambient conditions (nMSCs) or a metabolic switching paradigm by alternating galactose and glucose in medium (sMSCs) and then assayed for oxygen consumption rates using the Seahorse technology. Subsequently, primary neurons were subjected to oxygen glucose deprivation (OGD) and then co-cultured with either nMSCs or sMSCs. Compared to nMSCs, sMSCs displayed higher basal energy production, larger spare respiratory capacity, greater ATP production, and decreased proton leak. Co-culture of OGD-exposed neurons with sMSCs conferred greater cell viability, enhanced cell metabolism, reduced mitochondrial reactive oxidative species mRNA, and elevated mitochondria ATP mRNA than those cultured with nMSCs. Metabolic switching produces \"super\" mitochondria that may underlie the therapeutic benefit of using sMSCs to treat ischemic cells.</p>","PeriodicalId":19304,"journal":{"name":"NeuroMolecular Medicine","volume":"25 1","pages":"120-124"},"PeriodicalIF":3.9000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10025198/pdf/","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroMolecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12017-022-08720-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 5

Abstract

Transfer of healthy mitochondria from mesenchymal stem cells (MSCs) to ischemic neurons represents a potent stroke therapeutic. MSCs were grown under ambient conditions (nMSCs) or a metabolic switching paradigm by alternating galactose and glucose in medium (sMSCs) and then assayed for oxygen consumption rates using the Seahorse technology. Subsequently, primary neurons were subjected to oxygen glucose deprivation (OGD) and then co-cultured with either nMSCs or sMSCs. Compared to nMSCs, sMSCs displayed higher basal energy production, larger spare respiratory capacity, greater ATP production, and decreased proton leak. Co-culture of OGD-exposed neurons with sMSCs conferred greater cell viability, enhanced cell metabolism, reduced mitochondrial reactive oxidative species mRNA, and elevated mitochondria ATP mRNA than those cultured with nMSCs. Metabolic switching produces "super" mitochondria that may underlie the therapeutic benefit of using sMSCs to treat ischemic cells.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
培养间充质干细胞代谢转换产生超级线粒体在缺血性神经元的修复中的作用。
将健康线粒体从间充质干细胞(MSCs)转移到缺血性神经元是一种有效的中风治疗方法。在环境条件下(nMSCs)或通过在培养基中交替使用半乳糖和葡萄糖(sMSCs)的代谢转换模式培养MSCs,然后使用Seahorse技术检测氧消耗率。随后,将原代神经元进行氧葡萄糖剥夺(OGD),然后与nMSCs或sMSCs共培养。与nMSCs相比,sMSCs显示出更高的基础能量产生、更大的备用呼吸能力、更多的ATP产生和更少的质子泄漏。与nMSCs共培养相比,ogd暴露的神经元与sMSCs共培养具有更高的细胞活力,增强细胞代谢,降低线粒体活性氧化物种mRNA,并提高线粒体ATP mRNA。代谢开关产生“超级”线粒体,这可能是使用sMSCs治疗缺血性细胞的治疗益处的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
NeuroMolecular Medicine
NeuroMolecular Medicine 医学-神经科学
CiteScore
7.10
自引率
0.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: NeuroMolecular Medicine publishes cutting-edge original research articles and critical reviews on the molecular and biochemical basis of neurological disorders. Studies range from genetic analyses of human populations to animal and cell culture models of neurological disorders. Emerging findings concerning the identification of genetic aberrancies and their pathogenic mechanisms at the molecular and cellular levels will be included. Also covered are experimental analyses of molecular cascades involved in the development and adult plasticity of the nervous system, in neurological dysfunction, and in neuronal degeneration and repair. NeuroMolecular Medicine encompasses basic research in the fields of molecular genetics, signal transduction, plasticity, and cell death. The information published in NEMM will provide a window into the future of molecular medicine for the nervous system.
期刊最新文献
Simvastatin Ameliorates Lipid Metabolism-Mediated Endothelial Inflammation and Tight Junction Impairment in Chronic Cerebral Hypoperfusion. Phloretin as a Multitarget Neuroprotective Agent: Mechanistic Insights into the Modulation of Oxidative Stress, Inflammation, and Apoptosis. In Silico Phosphoproteomic Analysis Reveals Divergent Regulation of Presenilin 1 and Presenilin 2. Neuronal Subtype-Specific Expression of γ-Enolase: Its Role in Neuronal Differentiation. Myelin Lipid Reserves as a Conditional Metabolic Buffer: Implications for Alzheimer's Disease and Ischemic Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1