Integrating Biomaterials and Genome Editing Approaches to Advance Biomedical Science.

IF 12.8 1区 工程技术 Q1 ENGINEERING, BIOMEDICAL Annual Review of Biomedical Engineering Pub Date : 2021-07-13 Epub Date: 2021-04-28 DOI:10.1146/annurev-bioeng-122019-121602
Amr A Abdeen, Brian D Cosgrove, Charles A Gersbach, Krishanu Saha
{"title":"Integrating Biomaterials and Genome Editing Approaches to Advance Biomedical Science.","authors":"Amr A Abdeen, Brian D Cosgrove, Charles A Gersbach, Krishanu Saha","doi":"10.1146/annurev-bioeng-122019-121602","DOIUrl":null,"url":null,"abstract":"<p><p>The recent discovery and subsequent development of the CRISPR-Cas9 (clustered regularly interspaced short palindromic repeat-CRISPR-associated protein 9) platform as a precise genome editing tool have transformed biomedicine. As these CRISPR-based tools have matured, multiple stages of the gene editing process and the bioengineering of human cells and tissues have advanced. Here, we highlight recent intersections in the development of biomaterials and genome editing technologies. These intersections include the delivery of macromolecules, where biomaterial platforms have been harnessed to enable nonviral delivery of genome engineering tools to cells and tissues in vivo. Further, engineering native-like biomaterial platforms for cell culture facilitates complex modeling of human development and disease when combined with genome engineering tools. Deeper integration of biomaterial platforms in these fields could play a significant role in enabling new breakthroughs in the application of gene editing for the treatment of human disease.</p>","PeriodicalId":50757,"journal":{"name":"Annual Review of Biomedical Engineering","volume":"23 ","pages":"493-516"},"PeriodicalIF":12.8000,"publicationDate":"2021-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-bioeng-122019-121602","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/4/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The recent discovery and subsequent development of the CRISPR-Cas9 (clustered regularly interspaced short palindromic repeat-CRISPR-associated protein 9) platform as a precise genome editing tool have transformed biomedicine. As these CRISPR-based tools have matured, multiple stages of the gene editing process and the bioengineering of human cells and tissues have advanced. Here, we highlight recent intersections in the development of biomaterials and genome editing technologies. These intersections include the delivery of macromolecules, where biomaterial platforms have been harnessed to enable nonviral delivery of genome engineering tools to cells and tissues in vivo. Further, engineering native-like biomaterial platforms for cell culture facilitates complex modeling of human development and disease when combined with genome engineering tools. Deeper integration of biomaterial platforms in these fields could play a significant role in enabling new breakthroughs in the application of gene editing for the treatment of human disease.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
整合生物材料和基因组编辑方法,推动生物医学科学的发展。
作为一种精确的基因组编辑工具,CRISPR-Cas9(簇状规则间隔短回文重复-CRISPR 相关蛋白 9)平台的最新发现和后续发展改变了生物医学。随着这些基于 CRISPR 的工具日趋成熟,基因编辑过程的多个阶段以及人体细胞和组织的生物工程都取得了进展。在此,我们重点介绍生物材料和基因组编辑技术发展的最新交叉点。这些交叉点包括大分子的递送,生物材料平台已被用于将基因组工程工具以非病毒方式递送到体内细胞和组织。此外,用于细胞培养的类原生生物材料工程平台与基因组工程工具相结合,可促进人类发育和疾病的复杂建模。生物材料平台在这些领域的深度整合可在实现基因编辑治疗人类疾病的新突破方面发挥重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual Review of Biomedical Engineering
Annual Review of Biomedical Engineering 工程技术-工程:生物医学
CiteScore
18.80
自引率
0.00%
发文量
14
期刊介绍: Since 1999, the Annual Review of Biomedical Engineering has been capturing major advancements in the expansive realm of biomedical engineering. Encompassing biomechanics, biomaterials, computational genomics and proteomics, tissue engineering, biomonitoring, healthcare engineering, drug delivery, bioelectrical engineering, biochemical engineering, and biomedical imaging, the journal remains a vital resource. The current volume has transitioned from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license.
期刊最新文献
Cell-Instructive Biomaterials with Native-Like Biochemical Complexity. Designer Organs: Ethical Genetic Modifications in the Era of Machine Perfusion. Emerging Technologies for Multiphoton Writing and Reading of Polymeric Architectures for Biomedical Applications. Understanding the Lymphatic System: Tissue-on-Chip Modeling. Neurons as Immunomodulators: From Rapid Neural Activity to Prolonged Regulation of Cytokines and Microglia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1