EGF, a veteran of wound healing: highlights on its mode of action, clinical applications with focus on wound treatment, and recent drug delivery strategies

IF 6.9 3区 医学 Q1 CHEMISTRY, MEDICINAL Archives of Pharmacal Research Pub Date : 2023-03-16 DOI:10.1007/s12272-023-01444-3
Kanchan Shakhakarmi, Jo-Eun Seo, Shrawani Lamichhane, Chhitij Thapa, Sangkil Lee
{"title":"EGF, a veteran of wound healing: highlights on its mode of action, clinical applications with focus on wound treatment, and recent drug delivery strategies","authors":"Kanchan Shakhakarmi,&nbsp;Jo-Eun Seo,&nbsp;Shrawani Lamichhane,&nbsp;Chhitij Thapa,&nbsp;Sangkil Lee","doi":"10.1007/s12272-023-01444-3","DOIUrl":null,"url":null,"abstract":"<div><p>Epidermal growth factor (EGF) has been used in wound management and regenerative medicine since the late 1980s. It has been widely utilized for a long time and still is because of its excellent tolerability and efficacy. EGF has many applications in tissue engineering, cancer therapy, lung diseases, gastric ulcers, and wound healing. Nevertheless, its in vivo and during storage stability is a primary concern. This review focuses on the topical use of EGF, especially in chronic wound healing, the emerging use of biomaterials to deliver it, and future research possibilities. To successfully deliver EGF to wounds, a delivery system that is proteolytically resistant and stable over the long term is required. Biomaterials are an area of interest for the development of such systems. These systems may be used in non-healing wounds such as diabetic foot ulcers, pressure ulcers, and burns. In these pathologies, EGF can reduce the risk of amputation of the lower extremities, as it accelerates the wound healing process. Furthermore, appropriate delivery system would also stabilize and control the EGF release profile in a wound. Several in vitro and in vivo studies have already proven the efficacy of such systems in the above-mentioned types of wounds. Moreover, several formulations such as ointments and intralesional injections are already available on the market. However, these products are still problematic in terms of inadequate diffusion of EGF, low bioavailability storage conditions, and shelf-life. This review discusses the nano formulations comprising biomaterials infused with EGF which could be a promising delivery system for chronic wound healing in the future.</p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Pharmacal Research","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s12272-023-01444-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 4

Abstract

Epidermal growth factor (EGF) has been used in wound management and regenerative medicine since the late 1980s. It has been widely utilized for a long time and still is because of its excellent tolerability and efficacy. EGF has many applications in tissue engineering, cancer therapy, lung diseases, gastric ulcers, and wound healing. Nevertheless, its in vivo and during storage stability is a primary concern. This review focuses on the topical use of EGF, especially in chronic wound healing, the emerging use of biomaterials to deliver it, and future research possibilities. To successfully deliver EGF to wounds, a delivery system that is proteolytically resistant and stable over the long term is required. Biomaterials are an area of interest for the development of such systems. These systems may be used in non-healing wounds such as diabetic foot ulcers, pressure ulcers, and burns. In these pathologies, EGF can reduce the risk of amputation of the lower extremities, as it accelerates the wound healing process. Furthermore, appropriate delivery system would also stabilize and control the EGF release profile in a wound. Several in vitro and in vivo studies have already proven the efficacy of such systems in the above-mentioned types of wounds. Moreover, several formulations such as ointments and intralesional injections are already available on the market. However, these products are still problematic in terms of inadequate diffusion of EGF, low bioavailability storage conditions, and shelf-life. This review discusses the nano formulations comprising biomaterials infused with EGF which could be a promising delivery system for chronic wound healing in the future.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EGF,伤口愈合的老手:重点介绍其作用方式,临床应用,重点是伤口治疗,以及最近的给药策略
表皮生长因子(EGF)自20世纪80年代末以来一直用于伤口管理和再生医学。由于其良好的耐受性和疗效,它已经被广泛应用了很长时间,现在仍然是。EGF在组织工程、癌症治疗、肺部疾病、胃溃疡和伤口愈合等方面有广泛的应用。然而,其在体内和贮存期间的稳定性是一个主要问题。这篇综述的重点是EGF的局部应用,特别是在慢性伤口愈合中的应用,新兴的生物材料的应用,以及未来的研究可能性。为了成功地将EGF输送到伤口,需要一种具有蛋白水解抗性和长期稳定的输送系统。生物材料是开发此类系统的一个感兴趣的领域。这些系统可用于不愈合的伤口,如糖尿病足溃疡、压疮和烧伤。在这些疾病中,EGF可以降低下肢截肢的风险,因为它加速了伤口愈合过程。此外,适当的给药系统也可以稳定和控制EGF在伤口中的释放。一些体外和体内研究已经证明了这种系统在上述类型伤口中的功效。此外,市场上已经有一些配方,如软膏和局部注射。然而,这些产品在表皮生长因子扩散不足、生物利用度低、储存条件和保质期方面仍然存在问题。这篇综述讨论了由生物材料注入EGF组成的纳米配方,它可能是未来慢性伤口愈合的一种有前途的递送系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
13.40
自引率
9.00%
发文量
48
审稿时长
3.3 months
期刊介绍: Archives of Pharmacal Research is the official journal of the Pharmaceutical Society of Korea and has been published since 1976. Archives of Pharmacal Research is an interdisciplinary journal devoted to the publication of original scientific research papers and reviews in the fields of drug discovery, drug development, and drug actions with a view to providing fundamental and novel information on drugs and drug candidates.
期刊最新文献
Modulating versatile pathways using a cleavable PEG shell and EGFR-targeted nanoparticles to deliver CRISPR-Cas9 and docetaxel for triple-negative breast cancer inhibition. Ginsenoside Rg3 activates the immune function of CD8+ T cells via circFOXP1-miR-4477a-PD-L1 axis to induce ferroptosis in gallbladder cancer. Potential effects of a human milk oligosaccharide 6'-sialyllactose on angiotensin II-induced aortic aneurysm via p90RSK/TGF-β/SMAD2 signaling pathway. Akt-activated GSK3β inhibitory peptide effectively blocks tau hyperphosphorylation. Paeonia genus: a systematic review of active ingredients, pharmacological effects and mechanisms, and clinical applications for the treatment of cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1