Guest Editorial: Two Decades of LIFDI: Pedigree and Capabilities.

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-02-01 DOI:10.1177/14690667221146486
H Bernhard Linden
{"title":"Guest Editorial: Two Decades of LIFDI: Pedigree and Capabilities.","authors":"H Bernhard Linden","doi":"10.1177/14690667221146486","DOIUrl":null,"url":null,"abstract":"Liquid Injection Field Desorption Ionization (LIFDI) Mass Spectrometry (MS) became increasingly attractive to catalytic, inorganic, and organometallic chemists publishing more than 500 papers with LIFDI data during the last years. The extremely soft ionization of neutral compounds, the compatibility with non-polar solvents like toluene or hexane and last but not least the quick and convenient protocol under anaerobic conditions made LIFDI MS the method of choice for reactive compounds sensitive to air and/or moisture. The softness of the ionization is due to the fact that LIFDI is one of three Field Ionization (FI) methods which remove the weakest bound electron from neutral molecules literally without transferring excess energy to the hence stable radical ions. FI-MS was introduced by Inghram and Gomer in 1955 as the first of these methods (DOI: 10.1021/ja01607a096). FI mass spectra of hydrocarbons were essentially free of fragment ion peaks as opposed to Electron Ionization (EI) spectra. This made FI become a standard ionization method in the petrochemical industry. FI and EI have in common that only gases and vapours of compounds can be ionized. Therefore, the term FI-MS was soon associated with soft ionization mass spectrometry for the analysis of gases and volatile compounds. Field Desorption (FD) was introduced in 1969 by my venerated teacher Hans Dieter Beckey (DOI: 10.1016/ 0020-7381(69)80047-1). Using FI, he observed raising signal intensities along with the aging of the emitter wire. The notable increase in ionization efficiency was found to be correlated with the growth of tiny graphite whiskers via decomposition of acetone vapour on the hot surface of the wire. This process during tuning of the ion source raised the local field strength this strongly that up to 100 times more intensive signals appeared. When Beckey dipped a solution of D-Glucose onto an aged, i.e., “high sensitivity” wire, reinstalled the source flange, pumped down, and acquired the first FD spectra, he obtained the [M+H] ion signal as the base peak while fragment ion intensities remained at a negligible level. Thus, according to the title of the first FD paper, FD became the first ionization method for “the study of thermally unstable substances of low volatility”. LIFDI was introduced here in EJMS in 2004 (DOI: 10.1255/ejms.655). LIFDI outperforms FD by its convenient sample supply to the emitter right inside the ion source through a fused silica capillary without breaking the vacuum. LIFDI enabled a fully anaerobic protocol with the capillary aspirating sample solution under the inert headspace of a septum capped vial or directly out of the glove box (DOI: 10.1021/jacsau.1c00117). In conclusion, LIFDI, FD, and FI share the soft ionization of neutral molecules by “removal of electrons from any species by interaction with a high electrical field” (according to UPAC 1997). They differ in the way the samples are supplied to the emitter: in FI via the gas phase, in FD from solution applied onto the emitter outside of the ion source vacuum, and finally, in LIFDI through a capillary directly onto the emitter inside of the vacuum. I am honored and grateful alike for the occasion to serve as a guest editor to publish this special issue celebrating LIFDI-MS two decades after its introduction. Finally, I want to thank all scientist who agreed to publish their most recent findings in the field in this special issue of EJMS.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/14690667221146486","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Liquid Injection Field Desorption Ionization (LIFDI) Mass Spectrometry (MS) became increasingly attractive to catalytic, inorganic, and organometallic chemists publishing more than 500 papers with LIFDI data during the last years. The extremely soft ionization of neutral compounds, the compatibility with non-polar solvents like toluene or hexane and last but not least the quick and convenient protocol under anaerobic conditions made LIFDI MS the method of choice for reactive compounds sensitive to air and/or moisture. The softness of the ionization is due to the fact that LIFDI is one of three Field Ionization (FI) methods which remove the weakest bound electron from neutral molecules literally without transferring excess energy to the hence stable radical ions. FI-MS was introduced by Inghram and Gomer in 1955 as the first of these methods (DOI: 10.1021/ja01607a096). FI mass spectra of hydrocarbons were essentially free of fragment ion peaks as opposed to Electron Ionization (EI) spectra. This made FI become a standard ionization method in the petrochemical industry. FI and EI have in common that only gases and vapours of compounds can be ionized. Therefore, the term FI-MS was soon associated with soft ionization mass spectrometry for the analysis of gases and volatile compounds. Field Desorption (FD) was introduced in 1969 by my venerated teacher Hans Dieter Beckey (DOI: 10.1016/ 0020-7381(69)80047-1). Using FI, he observed raising signal intensities along with the aging of the emitter wire. The notable increase in ionization efficiency was found to be correlated with the growth of tiny graphite whiskers via decomposition of acetone vapour on the hot surface of the wire. This process during tuning of the ion source raised the local field strength this strongly that up to 100 times more intensive signals appeared. When Beckey dipped a solution of D-Glucose onto an aged, i.e., “high sensitivity” wire, reinstalled the source flange, pumped down, and acquired the first FD spectra, he obtained the [M+H] ion signal as the base peak while fragment ion intensities remained at a negligible level. Thus, according to the title of the first FD paper, FD became the first ionization method for “the study of thermally unstable substances of low volatility”. LIFDI was introduced here in EJMS in 2004 (DOI: 10.1255/ejms.655). LIFDI outperforms FD by its convenient sample supply to the emitter right inside the ion source through a fused silica capillary without breaking the vacuum. LIFDI enabled a fully anaerobic protocol with the capillary aspirating sample solution under the inert headspace of a septum capped vial or directly out of the glove box (DOI: 10.1021/jacsau.1c00117). In conclusion, LIFDI, FD, and FI share the soft ionization of neutral molecules by “removal of electrons from any species by interaction with a high electrical field” (according to UPAC 1997). They differ in the way the samples are supplied to the emitter: in FI via the gas phase, in FD from solution applied onto the emitter outside of the ion source vacuum, and finally, in LIFDI through a capillary directly onto the emitter inside of the vacuum. I am honored and grateful alike for the occasion to serve as a guest editor to publish this special issue celebrating LIFDI-MS two decades after its introduction. Finally, I want to thank all scientist who agreed to publish their most recent findings in the field in this special issue of EJMS.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
客座评论:LIFDI的二十年:谱系和能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Mentorship in academic musculoskeletal radiology: perspectives from a junior faculty member. Underlying synovial sarcoma undiagnosed for more than 20 years in a patient with regional pain: a case report. Sacrococcygeal chordoma with spontaneous regression due to a large hemorrhagic component. Associations of cumulative voriconazole dose, treatment duration, and alkaline phosphatase with voriconazole-induced periostitis. Can the presence of SLAP-5 lesions be predicted by using the critical shoulder angle in traumatic anterior shoulder instability?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1