Design and engineering of organ-on-a-chip.

IF 3.2 4区 医学 Q2 ENGINEERING, BIOMEDICAL Biomedical Engineering Letters Pub Date : 2023-05-01 DOI:10.1007/s13534-022-00258-4
Sujin Cho, Sumi Lee, Song Ih Ahn
{"title":"Design and engineering of organ-on-a-chip.","authors":"Sujin Cho,&nbsp;Sumi Lee,&nbsp;Song Ih Ahn","doi":"10.1007/s13534-022-00258-4","DOIUrl":null,"url":null,"abstract":"<p><p>Organ-on-a-chip (OOC) is an emerging interdisciplinary technology that reconstitutes the structure, function, and physiology of human tissues as an alternative to conventional preclinical models for drug screening. Over the last decade, substantial progress has been made in mimicking tissue- and organ-level functions on chips through technical advances in biomaterials, stem cell engineering, microengineering, and microfluidic technologies. Structural and engineering constituents, as well as biological components, are critical factors to be considered to reconstitute the tissue function and microenvironment on chips. In this review, we highlight critical engineering technologies for reconstructing the tissue microarchitecture and dynamic spatiotemporal microenvironment in OOCs. We review the technological advances in the field of OOCs for a range of applications, including systemic analysis tools that can be integrated with OOCs, multiorgan-on-chips, and large-scale manufacturing. We then discuss the challenges and future directions for the development of advanced end-user-friendly OOC systems for a wide range of applications.</p>","PeriodicalId":46898,"journal":{"name":"Biomedical Engineering Letters","volume":"13 2","pages":"97-109"},"PeriodicalIF":3.2000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9806813/pdf/","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13534-022-00258-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 8

Abstract

Organ-on-a-chip (OOC) is an emerging interdisciplinary technology that reconstitutes the structure, function, and physiology of human tissues as an alternative to conventional preclinical models for drug screening. Over the last decade, substantial progress has been made in mimicking tissue- and organ-level functions on chips through technical advances in biomaterials, stem cell engineering, microengineering, and microfluidic technologies. Structural and engineering constituents, as well as biological components, are critical factors to be considered to reconstitute the tissue function and microenvironment on chips. In this review, we highlight critical engineering technologies for reconstructing the tissue microarchitecture and dynamic spatiotemporal microenvironment in OOCs. We review the technological advances in the field of OOCs for a range of applications, including systemic analysis tools that can be integrated with OOCs, multiorgan-on-chips, and large-scale manufacturing. We then discuss the challenges and future directions for the development of advanced end-user-friendly OOC systems for a wide range of applications.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
器官芯片的设计与工程。
器官芯片(OOC)是一项新兴的跨学科技术,它可以重建人体组织的结构、功能和生理,作为药物筛选的传统临床前模型的替代方案。在过去的十年中,通过生物材料、干细胞工程、微工程和微流体技术的技术进步,在芯片上模拟组织和器官水平的功能方面取得了实质性进展。结构和工程成分以及生物成分是重构芯片组织功能和微环境的关键因素。本文重点介绍了重建OOCs组织微结构和动态时空微环境的关键工程技术。我们回顾了ooc领域在一系列应用方面的技术进展,包括可与ooc集成的系统分析工具、多器官芯片和大规模制造。然后,我们讨论了面向广泛应用的先进终端用户友好的OOC系统开发的挑战和未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomedical Engineering Letters
Biomedical Engineering Letters ENGINEERING, BIOMEDICAL-
CiteScore
6.80
自引率
0.00%
发文量
34
期刊介绍: Biomedical Engineering Letters (BMEL) aims to present the innovative experimental science and technological development in the biomedical field as well as clinical application of new development. The article must contain original biomedical engineering content, defined as development, theoretical analysis, and evaluation/validation of a new technique. BMEL publishes the following types of papers: original articles, review articles, editorials, and letters to the editor. All the papers are reviewed in single-blind fashion.
期刊最新文献
Sensitivity Analysis of Microstrip Patch Antenna Genres: Slotted and Through-hole Microstrip Patch Antenna. Unveiling the endocrine connections of NAFLD: evidence from a comprehensive mendelian randomization study. Brain-inspired learning rules for spiking neural network-based control: a tutorial. Alzheimer's disease recognition based on waveform and spectral speech signal processing. A high performance heterogeneous hardware architecture for brain computer interface.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1