An Optimized Dental Implant Model Using Finite Element Analysis and Design of Experiment.

IF 1.7 4区 医学 Q3 DENTISTRY, ORAL SURGERY & MEDICINE International Journal of Oral & Maxillofacial Implants Pub Date : 2023-01-01 DOI:10.11607/jomi.9785
Sambhrant Srivastava, Saroj Kumar Sarangi
{"title":"An Optimized Dental Implant Model Using Finite Element Analysis and Design of Experiment.","authors":"Sambhrant Srivastava,&nbsp;Saroj Kumar Sarangi","doi":"10.11607/jomi.9785","DOIUrl":null,"url":null,"abstract":"<p><p><b>Purpose:</b> To develop, analyze, and optimize a dental implant by considering square threads and varying the thread dimensions to obtain an optimal shape. <b>Materials and Methods:</b> For this study, finite element analysis (FEA) and numerical optimization method were integrated to develop a mathematical model. The critical parameters of dental implants were studied, and an optimized shape was obtained using response surface method (RSM) and design of experiment (DOE). The simulated results were then compared to the predicted values under optimal conditions. <b>Results:</b> Using the one-factor RSM design model for the dental implant and a vertical compressive load of 450 N for testing, the optimal depth to width ratio for the thread was 0.7 in order to achieve the minimum von Mises and shear stress. <b>Conclusion:</b> The buttress thread was found to be the optimal shape for achieving the lowest von Mises and shear stress compared to square threads, and the thread parameters were calculated accordingly, with a thread depth 0.45 times the pitch, a width 0.3 times the pitch, and a thread angle of 17 degrees. Also, due to the constant diameter of the implant, common 4-mm diameter abutments can be used interchangeably.</p>","PeriodicalId":50298,"journal":{"name":"International Journal of Oral & Maxillofacial Implants","volume":"38 1","pages":"142-149"},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Oral & Maxillofacial Implants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.11607/jomi.9785","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: To develop, analyze, and optimize a dental implant by considering square threads and varying the thread dimensions to obtain an optimal shape. Materials and Methods: For this study, finite element analysis (FEA) and numerical optimization method were integrated to develop a mathematical model. The critical parameters of dental implants were studied, and an optimized shape was obtained using response surface method (RSM) and design of experiment (DOE). The simulated results were then compared to the predicted values under optimal conditions. Results: Using the one-factor RSM design model for the dental implant and a vertical compressive load of 450 N for testing, the optimal depth to width ratio for the thread was 0.7 in order to achieve the minimum von Mises and shear stress. Conclusion: The buttress thread was found to be the optimal shape for achieving the lowest von Mises and shear stress compared to square threads, and the thread parameters were calculated accordingly, with a thread depth 0.45 times the pitch, a width 0.3 times the pitch, and a thread angle of 17 degrees. Also, due to the constant diameter of the implant, common 4-mm diameter abutments can be used interchangeably.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于有限元分析和实验设计的牙种植体模型优化。
目的:通过考虑方螺纹和改变螺纹尺寸以获得最佳形状来开发,分析和优化牙科种植体。材料与方法:本研究采用有限元分析(FEA)和数值优化方法相结合的方法建立数学模型。采用响应面法(RSM)和实验设计法(DOE)对种植体的关键参数进行了研究,得到了种植体的最佳形状。然后将模拟结果与最优条件下的预测值进行比较。结果:采用单因素RSM设计模型,在450n的垂直压缩载荷下进行测试,获得von Mises和剪切应力最小的最佳螺纹深宽比为0.7。结论:与方螺纹相比,支撑螺纹是获得最小von Mises和剪切应力的最佳螺纹形状,并据此计算螺纹参数,螺纹深度为0.45倍节距,宽度为0.3倍节距,螺纹角为17度。此外,由于种植体的直径恒定,常见的4毫米直径的基台可以互换使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.30
自引率
5.00%
发文量
115
审稿时长
6 months
期刊介绍: Edited by Steven E. Eckert, DDS, MS ISSN (Print): 0882-2786 ISSN (Online): 1942-4434 This highly regarded, often-cited journal integrates clinical and scientific data to improve methods and results of oral and maxillofacial implant therapy. It presents pioneering research, technology, clinical applications, reviews of the literature, seminal studies, emerging technology, position papers, and consensus studies, as well as the many clinical and therapeutic innovations that ensue as a result of these efforts. The editorial board is composed of recognized opinion leaders in their respective areas of expertise and reflects the international reach of the journal. Under their leadership, JOMI maintains its strong scientific integrity while expanding its influence within the field of implant dentistry. JOMI’s popular regular feature "Thematic Abstract Review" presents a review of abstracts of recently published articles on a specific topical area of interest each issue.
期刊最新文献
Peri-implant Parameters of Dental Implants Inserted in Prefabricated Microvascular Fibular Flaps: A Retrospective Study. Different Surgical Techniques in the All-on-4 Treatment Concept: Evaluation of the Stress Distribution Created in Implant and Peripheral Bone with Finite Element Analysis. Augmentation of Peri-implant Keratinized Mucosa Using a Combination of Free Gingival Graft Strip with Xenogeneic Collagen Matrix or Free Gingival Graft Alone: A Randomized Controlled Study. Efficacy of Labial Split-Thickness Eversion Periosteoplasty for Soft Tissue Management in Posterior Mandibular Horizontal Ridge Augmentation Procedures: A Prospective Clinical Study. Porcine Resorbable Collagen Matrix Shows Good Incorporation of Liquid Platelet-Rich Fibrin In Vitro.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1