{"title":"Effect of galvanic vestibular stimulation applied at the onset of stance on muscular activity and gait cycle duration in healthy individuals.","authors":"Faezeh Abbariki, Youstina Mikhail, Adjia Hamadjida, Jonathan Charron, Jean-Marc Mac-Thiong, Dorothy Barthélemy","doi":"10.3389/fncir.2022.1065647","DOIUrl":null,"url":null,"abstract":"<p><p>Locomotion requires the complex involvement of the spinal and supraspinal systems. So far, the role of vestibular input in gait has been assessed mainly with respect to gait stability. The noninvasive technique of galvanic vestibular stimulation (GVS) has been reported to decrease gait variability and increase gait speed, but the extent of its effect on spatiotemporal gait parameters is not fully known. <b>Objective:</b> Characterize vestibular responses during gait and determine the influence of GVS on cycle duration in healthy young participants. <b>Methods:</b> Fifteen right-handed individuals participated in the study. Electromyography (EMG) recordings of the bilateral soleus (SOL) and tibialis anterior muscles (TA) were performed. First, to determine stimulation intensity, an accelerometer placed on the vertex recorded the amplitude of the head tilts evoked by the GVS (1-4 mA, 200 ms) to establish a motor threshold (T). Second, while participants walked on a treadmill, GVS was applied at the onset of the stance phase during the treadmill gait with an intensity of 1 and 1.5 T with the cathode behind the right (RCathode) or left ear (LCathode). EMG traces were rectified, averaged (<i>n</i> = 30 stimuli), and analyzed. Latency, duration, and amplitude of vestibular responses as well as the mean duration of the gait cycles were measured. <b>Results:</b> GVS mainly induced long-latency responses in the right SOL, right TA and left TA. Only short-latency responses were triggered in the left SOL. Responses in the right SOL, left SOL and left TA were polarity dependent, being facilitatory with RCathode and inhibitory with LCathode, whereas responses in the right TA remained facilitatory regardless of the polarity. With the RCathode configuration, the stimulated cycle was prolonged compared with the control cycle at both 1 and 1.5 T, due to prolonged left SOL and TA EMG bursts, but no change was observed in right SOL and TA. With LCathode, GVS did not modify the cycle duration. <b>Conclusion:</b> During gait, a brief, low-intensity GVS pulse delivered at the right stance onset induced mainly long-latency polarity-dependent responses. Furthermore, a RCathode configuration increased the duration of the stimulated gait cycle by prolonging EMG activity on the anodic side. A similar approach could be explored to influence gait symmetry in individuals with neurological impairment.</p>","PeriodicalId":12498,"journal":{"name":"Frontiers in Neural Circuits","volume":"16 ","pages":"1065647"},"PeriodicalIF":3.4000,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9946991/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neural Circuits","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncir.2022.1065647","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Locomotion requires the complex involvement of the spinal and supraspinal systems. So far, the role of vestibular input in gait has been assessed mainly with respect to gait stability. The noninvasive technique of galvanic vestibular stimulation (GVS) has been reported to decrease gait variability and increase gait speed, but the extent of its effect on spatiotemporal gait parameters is not fully known. Objective: Characterize vestibular responses during gait and determine the influence of GVS on cycle duration in healthy young participants. Methods: Fifteen right-handed individuals participated in the study. Electromyography (EMG) recordings of the bilateral soleus (SOL) and tibialis anterior muscles (TA) were performed. First, to determine stimulation intensity, an accelerometer placed on the vertex recorded the amplitude of the head tilts evoked by the GVS (1-4 mA, 200 ms) to establish a motor threshold (T). Second, while participants walked on a treadmill, GVS was applied at the onset of the stance phase during the treadmill gait with an intensity of 1 and 1.5 T with the cathode behind the right (RCathode) or left ear (LCathode). EMG traces were rectified, averaged (n = 30 stimuli), and analyzed. Latency, duration, and amplitude of vestibular responses as well as the mean duration of the gait cycles were measured. Results: GVS mainly induced long-latency responses in the right SOL, right TA and left TA. Only short-latency responses were triggered in the left SOL. Responses in the right SOL, left SOL and left TA were polarity dependent, being facilitatory with RCathode and inhibitory with LCathode, whereas responses in the right TA remained facilitatory regardless of the polarity. With the RCathode configuration, the stimulated cycle was prolonged compared with the control cycle at both 1 and 1.5 T, due to prolonged left SOL and TA EMG bursts, but no change was observed in right SOL and TA. With LCathode, GVS did not modify the cycle duration. Conclusion: During gait, a brief, low-intensity GVS pulse delivered at the right stance onset induced mainly long-latency polarity-dependent responses. Furthermore, a RCathode configuration increased the duration of the stimulated gait cycle by prolonging EMG activity on the anodic side. A similar approach could be explored to influence gait symmetry in individuals with neurological impairment.
运动需要脊髓和脊髓上系统的复杂参与。迄今为止,对前庭输入在步态中作用的评估主要集中在步态稳定性方面。据报道,电刺激前庭(GVS)这一无创技术可降低步态变异性并提高步态速度,但其对步态时空参数的影响程度尚不完全清楚。研究目的描述健康年轻参与者在步态过程中的前庭反应,并确定 GVS 对周期持续时间的影响。方法15 名右撇子参加了研究。对双侧比目鱼肌(SOL)和胫骨前肌(TA)进行了肌电图(EMG)记录。首先,为了确定刺激强度,放置在顶点的加速度计记录了龙胆紫(1-4 mA,200 ms)诱发的头部倾斜幅度,以确定运动阈值(T)。其次,当参与者在跑步机上行走时,在跑步机步态的起始阶段施加强度为 1 和 1.5 T 的 GVS,阴极位于右耳(RCathode)或左耳(LCathode)后方。对 EMG 曲线进行整流、平均(n = 30 个刺激)和分析。测量前庭反应的延迟时间、持续时间和振幅以及步态周期的平均持续时间。结果显示GVS主要诱发右SOL、右TA和左TA的长时程反应。左侧 SOL 仅出现短时反应。右侧 SOL、左侧 SOL 和左侧 TA 的反应与极性有关,使用 RCathode 时为促进性,使用 LCathode 时为抑制性,而右侧 TA 的反应无论极性如何均为促进性。使用 RCathode 配置时,由于左侧 SOL 和 TA 肌电图猝发时间延长,在 1 T 和 1.5 T 条件下,刺激周期比对照周期延长,但右侧 SOL 和 TA 没有变化。使用 LCathode 时,GVS 不会改变周期持续时间。结论在步态过程中,在右侧站立开始时发出的短暂、低强度 GVS 脉冲主要诱发长周期极性依赖性反应。此外,RC 阴极配置通过延长阳极侧的肌电图活动,延长了刺激步态周期的持续时间。类似的方法也可用于影响神经系统受损患者的步态对称性。
期刊介绍:
Frontiers in Neural Circuits publishes rigorously peer-reviewed research on the emergent properties of neural circuits - the elementary modules of the brain. Specialty Chief Editors Takao K. Hensch and Edward Ruthazer at Harvard University and McGill University respectively, are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Frontiers in Neural Circuits launched in 2011 with great success and remains a "central watering hole" for research in neural circuits, serving the community worldwide to share data, ideas and inspiration. Articles revealing the anatomy, physiology, development or function of any neural circuitry in any species (from sponges to humans) are welcome. Our common thread seeks the computational strategies used by different circuits to link their structure with function (perceptual, motor, or internal), the general rules by which they operate, and how their particular designs lead to the emergence of complex properties and behaviors. Submissions focused on synaptic, cellular and connectivity principles in neural microcircuits using multidisciplinary approaches, especially newer molecular, developmental and genetic tools, are encouraged. Studies with an evolutionary perspective to better understand how circuit design and capabilities evolved to produce progressively more complex properties and behaviors are especially welcome. The journal is further interested in research revealing how plasticity shapes the structural and functional architecture of neural circuits.