Utilizing Moderated Non-linear Factor Analysis Models for Integrative Data Analysis: A Tutorial.

IF 2.5 2区 心理学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Structural Equation Modeling: A Multidisciplinary Journal Pub Date : 2023-01-01 Epub Date: 2022-05-23 DOI:10.1080/10705511.2022.2070753
Joseph M Kush, Katherine E Masyn, Masoumeh Amin-Esmaeili, Ryoko Susukida, Holly C Wilcox, Rashelle J Musci
{"title":"Utilizing Moderated Non-linear Factor Analysis Models for Integrative Data Analysis: A Tutorial.","authors":"Joseph M Kush, Katherine E Masyn, Masoumeh Amin-Esmaeili, Ryoko Susukida, Holly C Wilcox, Rashelle J Musci","doi":"10.1080/10705511.2022.2070753","DOIUrl":null,"url":null,"abstract":"<p><p>Integrative data analysis (IDA) is an analytic tool that allows researchers to combine raw data across multiple, independent studies, providing improved measurement of latent constructs as compared to single study analysis or meta-analyses. This is often achieved through implementation of moderated nonlinear factor analysis (MNLFA), an advanced modeling approach that allows for covariate moderation of item and factor parameters. The current paper provides an overview of this modeling technique, highlighting distinct advantages most apt for IDA. We further illustrate the complex modeling building process involved in MNLFA by providing a tutorial using empirical data from five separate prevention trials. The code and data used for analyses are also provided.</p>","PeriodicalId":21964,"journal":{"name":"Structural Equation Modeling: A Multidisciplinary Journal","volume":"30 1","pages":"149-164"},"PeriodicalIF":2.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9937431/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Equation Modeling: A Multidisciplinary Journal","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/10705511.2022.2070753","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/5/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 3

Abstract

Integrative data analysis (IDA) is an analytic tool that allows researchers to combine raw data across multiple, independent studies, providing improved measurement of latent constructs as compared to single study analysis or meta-analyses. This is often achieved through implementation of moderated nonlinear factor analysis (MNLFA), an advanced modeling approach that allows for covariate moderation of item and factor parameters. The current paper provides an overview of this modeling technique, highlighting distinct advantages most apt for IDA. We further illustrate the complex modeling building process involved in MNLFA by providing a tutorial using empirical data from five separate prevention trials. The code and data used for analyses are also provided.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用调节非线性因子分析模型进行综合数据分析:教程。
整合数据分析(IDA)是一种分析工具,它允许研究人员整合多项独立研究的原始数据,与单一研究分析或荟萃分析相比,能更好地测量潜在结构。这通常是通过实施调节非线性因子分析(MNLFA)来实现的,MNLFA 是一种先进的建模方法,允许对项目和因子参数进行协变量调节。本文概述了这种建模技术,强调了其最适合 IDA 的独特优势。我们利用五个独立预防试验的经验数据提供了一个教程,进一步说明了 MNLFA 所涉及的复杂建模过程。我们还提供了用于分析的代码和数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.70
自引率
11.70%
发文量
71
审稿时长
>12 weeks
期刊介绍: Structural Equation Modeling: A Multidisciplinary Journal publishes refereed scholarly work from all academic disciplines interested in structural equation modeling. These disciplines include, but are not limited to, psychology, medicine, sociology, education, political science, economics, management, and business/marketing. Theoretical articles address new developments; applied articles deal with innovative structural equation modeling applications; the Teacher’s Corner provides instructional modules on aspects of structural equation modeling; book and software reviews examine new modeling information and techniques; and advertising alerts readers to new products. Comments on technical or substantive issues addressed in articles or reviews published in the journal are encouraged; comments are reviewed, and authors of the original works are invited to respond.
期刊最新文献
A Simple Two-Step Procedure for Fitting Fully Unrestricted Exploratory Factor Analytic Solutions with Correlated Residuals Latent Profile Transition Analysis with Random Intercepts (RI-LPTA) Under-Fitting and Over-Fitting: The Performance of Bayesian Model Selection and Fit Indices in SEM GSCA Pro—Free Stand-Alone Software for Structural Equation Modeling On the Performance of Horseshoe Priors for Inducing Sparsity in Structural Equation Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1