Confidence Screening Detector: A New Method for Detecting Test Collusion.

IF 1 4区 心理学 Q4 PSYCHOLOGY, MATHEMATICAL Applied Psychological Measurement Pub Date : 2023-05-01 Epub Date: 2023-03-20 DOI:10.1177/01466216231165299
Yongze Xu, Ying Cui, Xinyi Wang, Meiwei Huang, Fang Luo
{"title":"Confidence Screening Detector: A New Method for Detecting Test Collusion.","authors":"Yongze Xu, Ying Cui, Xinyi Wang, Meiwei Huang, Fang Luo","doi":"10.1177/01466216231165299","DOIUrl":null,"url":null,"abstract":"<p><p>Test collusion (TC) is a form of cheating in which, examinees operate in groups to alter normal item responses. TC is becoming increasingly common, especially within high-stakes, large-scale examinations. However, research on TC detection methods remains scarce. The present article proposes a new algorithm for TC detection, inspired by variable selection within high-dimensional statistical analysis. The algorithm relies only on item responses and supports different response similarity indices. Simulation and practical studies were conducted to (1) compare the performance of the new algorithm against the recently developed clique detector approach, and (2) verify the performance of the new algorithm in a large-scale test setting.</p>","PeriodicalId":48300,"journal":{"name":"Applied Psychological Measurement","volume":"47 3","pages":"237-252"},"PeriodicalIF":1.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10126388/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Psychological Measurement","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/01466216231165299","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/20 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PSYCHOLOGY, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Test collusion (TC) is a form of cheating in which, examinees operate in groups to alter normal item responses. TC is becoming increasingly common, especially within high-stakes, large-scale examinations. However, research on TC detection methods remains scarce. The present article proposes a new algorithm for TC detection, inspired by variable selection within high-dimensional statistical analysis. The algorithm relies only on item responses and supports different response similarity indices. Simulation and practical studies were conducted to (1) compare the performance of the new algorithm against the recently developed clique detector approach, and (2) verify the performance of the new algorithm in a large-scale test setting.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
信心筛选探测器:检测测试串通的新方法。
考试串通(TC)是一种作弊形式,在这种形式中,应试者以小组为单位改变正常的题目答案。串通作弊越来越常见,尤其是在高风险的大型考试中。然而,有关串通作弊检测方法的研究仍然很少。本文受高维统计分析中变量选择的启发,提出了一种新的 TC 检测算法。该算法仅依赖于题目的答案,并支持不同的答案相似性指数。本文进行了仿真和实际研究,以便:(1)比较新算法与最近开发的簇检测器方法的性能;(2)验证新算法在大规模测试环境中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.30
自引率
8.30%
发文量
50
期刊介绍: Applied Psychological Measurement publishes empirical research on the application of techniques of psychological measurement to substantive problems in all areas of psychology and related disciplines.
期刊最新文献
Effect of Differential Item Functioning on Computer Adaptive Testing Under Different Conditions. Evaluating the Construct Validity of Instructional Manipulation Checks as Measures of Careless Responding to Surveys. A Mark-Recapture Approach to Estimating Item Pool Compromise. Estimating Test-Retest Reliability in the Presence of Self-Selection Bias and Learning/Practice Effects. The Improved EMS Algorithm for Latent Variable Selection in M3PL Model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1