Microalgae as Raw Materials for Aquafeeds: Growth Kinetics and Improvement Strategies of Polyunsaturated Fatty Acids Production.

IF 3 2区 农林科学 Q1 FISHERIES Aquaculture Nutrition Pub Date : 2023-01-06 eCollection Date: 2023-01-01 DOI:10.1155/2023/5110281
Oscar Soto-Sánchez, Pamela Hidalgo, Aixa González, Patricia E Oliveira, Adrián J Hernández Arias, Patricio Dantagnan
{"title":"Microalgae as Raw Materials for Aquafeeds: Growth Kinetics and Improvement Strategies of Polyunsaturated Fatty Acids Production.","authors":"Oscar Soto-Sánchez,&nbsp;Pamela Hidalgo,&nbsp;Aixa González,&nbsp;Patricia E Oliveira,&nbsp;Adrián J Hernández Arias,&nbsp;Patricio Dantagnan","doi":"10.1155/2023/5110281","DOIUrl":null,"url":null,"abstract":"<p><p>Studies have shown that ancient cultures used microalgae as food for centuries. Currently, scientific reports highlight the value of nutritional composition of microalgae and their ability to accumulate polyunsaturated fatty acids at certain operational conditions. These characteristics are gaining increasing interest for the aquaculture industry which is searching for cost-effective replacements for fish meal and oil because these commodities are one of the most significant operational expenses and their dependency has become a bottleneck for their sustainable development of the aquaculture industry. This review is aimed at highlighting the use of microalgae as polyunsaturated fatty acid source in aquaculture feed formulations, despite their scarce production at industrial scale. Moreover, this document includes several approaches to improve microalgae production and to increase the content of polyunsaturated fatty acids with emphasis in the accumulation of DHA, EPA, and ARA. Furthermore, the document compiles several studies which prove microalgae-based aquafeeds for marine and freshwater species. Finally, the study explores the aspects that intervene in production kinetics and improvement strategies with possibilities for upscaling and facing main challenges of using microalgae in the commercial production of aquafeeds.</p>","PeriodicalId":8225,"journal":{"name":"Aquaculture Nutrition","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9973195/pdf/","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquaculture Nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1155/2023/5110281","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 6

Abstract

Studies have shown that ancient cultures used microalgae as food for centuries. Currently, scientific reports highlight the value of nutritional composition of microalgae and their ability to accumulate polyunsaturated fatty acids at certain operational conditions. These characteristics are gaining increasing interest for the aquaculture industry which is searching for cost-effective replacements for fish meal and oil because these commodities are one of the most significant operational expenses and their dependency has become a bottleneck for their sustainable development of the aquaculture industry. This review is aimed at highlighting the use of microalgae as polyunsaturated fatty acid source in aquaculture feed formulations, despite their scarce production at industrial scale. Moreover, this document includes several approaches to improve microalgae production and to increase the content of polyunsaturated fatty acids with emphasis in the accumulation of DHA, EPA, and ARA. Furthermore, the document compiles several studies which prove microalgae-based aquafeeds for marine and freshwater species. Finally, the study explores the aspects that intervene in production kinetics and improvement strategies with possibilities for upscaling and facing main challenges of using microalgae in the commercial production of aquafeeds.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微藻作为水产饲料的原料:生长动力学及多不饱和脂肪酸生产的改进策略
研究表明,几个世纪以来,古代文化一直将微藻作为食物。目前,科学报告强调了微藻营养成分的价值及其在某些操作条件下积累多不饱和脂肪酸的能力。水产养殖业正在寻找具有成本效益的鱼粉和鱼油替代品,因为这些商品是最重要的运营费用之一,它们的依赖性已成为其水产养殖业可持续发展的瓶颈。这篇综述旨在强调微藻作为多不饱和脂肪酸来源在水产养殖饲料配方中的用途,尽管它们在工业规模上的产量很少。此外,本文件包括几种提高微藻产量和增加多不饱和脂肪酸含量的方法,重点是DHA、EPA和ARA的积累。此外,该文件汇编了几项研究,证明了海洋和淡水物种以微藻为基础的水产饲料。最后,本研究探讨了干预生产动力学和改进策略的方面,以及在水产饲料的商业生产中使用微藻的可能性和面临的主要挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Aquaculture Nutrition
Aquaculture Nutrition 农林科学-渔业
CiteScore
7.20
自引率
8.60%
发文量
131
审稿时长
3 months
期刊介绍: Aquaculture Nutrition is published on a bimonthly basis, providing a global perspective on the nutrition of all cultivated aquatic animals. Topics range from extensive aquaculture to laboratory studies of nutritional biochemistry and physiology. The Journal specifically seeks to improve our understanding of the nutrition of aquacultured species through the provision of an international forum for the presentation of reviews and original research papers. Aquaculture Nutrition publishes papers which strive to: increase basic knowledge of the nutrition of aquacultured species and elevate the standards of published aquaculture nutrition research. improve understanding of the relationships between nutrition and the environmental impact of aquaculture. increase understanding of the relationships between nutrition and processing, product quality, and the consumer. help aquaculturalists improve their management and understanding of the complex discipline of nutrition. help the aquaculture feed industry by providing a focus for relevant information, techniques, tools and concepts.
期刊最新文献
Supplementing the Diet of Hybrid Grouper (Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂) with Compound Acidifier Is a Good Way to Alleviate Poor Intestinal Growth Caused by High Levels of Cottonseed Protein Concentrate Effects of Replacing Inorganic with Organic Glycinates Trace Minerals on Growth Performance, Gut Function, and Minerals Loss of Juvenile Nile Tilapia The Use of Perovskia abrotanoides Extract in Ameliorating Heat Stress-Induced Oxidative Damage and Improving Growth Efficiency in Carp Juveniles (Cyprinus carpio) The Effect of Supplementation of Fish Protein Hydrolysate to the BSF-Based Aquafeed on the Growth, Survival, Fatty Acids, and Histopathology of Juvenile Lobster (Panulirus ornatus) Taurine Alleviated the Negative Effects of an Oxidized Lipid Diet on Growth Performance, Antioxidant Properties, and Muscle Quality of the Common Carp (Cyprinus carpio L.)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1