Gold nanoparticles delivery in mammalian live cells: a critical review.

Raphaël Lévy, Umbreen Shaheen, Yann Cesbron, Violaine Sée
{"title":"Gold nanoparticles delivery in mammalian live cells: a critical review.","authors":"Raphaël Lévy,&nbsp;Umbreen Shaheen,&nbsp;Yann Cesbron,&nbsp;Violaine Sée","doi":"10.3402/nano.v1i0.4889","DOIUrl":null,"url":null,"abstract":"<p><p>Functional nanomaterials have recently attracted strong interest from the biology community, not only as potential drug delivery vehicles or diagnostic tools, but also as optical nanomaterials. This is illustrated by the explosion of publications in the field with more than 2,000 publications in the last 2 years (4,000 papers since 2000; from ISI Web of Knowledge, 'nanoparticle and cell' hit). Such a publication boom in this novel interdisciplinary field has resulted in papers of unequal standard, partly because it is challenging to assemble the required expertise in chemistry, physics, and biology in a single team. As an extreme example, several papers published in physical chemistry journals claim intracellular delivery of nanoparticles, but show pictures of cells that are, to the expert biologist, evidently dead (and therefore permeable). To attain proper cellular applications using nanomaterials, it is critical not only to achieve efficient delivery in healthy cells, but also to control the intracellular availability and the fate of the nanomaterial. This is still an open challenge that will only be met by innovative delivery methods combined with rigorous and quantitative characterization of the uptake and the fate of the nanoparticles. This review mainly focuses on gold nanoparticles and discusses the various approaches to nanoparticle delivery, including surface chemical modifications and several methods used to facilitate cellular uptake and endosomal escape. We will also review the main detection methods and how their optimum use can inform about intracellular localization, efficiency of delivery, and integrity of the surface capping.</p>","PeriodicalId":74237,"journal":{"name":"Nano reviews","volume":"1 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3402/nano.v1i0.4889","citationCount":"200","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3402/nano.v1i0.4889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 200

Abstract

Functional nanomaterials have recently attracted strong interest from the biology community, not only as potential drug delivery vehicles or diagnostic tools, but also as optical nanomaterials. This is illustrated by the explosion of publications in the field with more than 2,000 publications in the last 2 years (4,000 papers since 2000; from ISI Web of Knowledge, 'nanoparticle and cell' hit). Such a publication boom in this novel interdisciplinary field has resulted in papers of unequal standard, partly because it is challenging to assemble the required expertise in chemistry, physics, and biology in a single team. As an extreme example, several papers published in physical chemistry journals claim intracellular delivery of nanoparticles, but show pictures of cells that are, to the expert biologist, evidently dead (and therefore permeable). To attain proper cellular applications using nanomaterials, it is critical not only to achieve efficient delivery in healthy cells, but also to control the intracellular availability and the fate of the nanomaterial. This is still an open challenge that will only be met by innovative delivery methods combined with rigorous and quantitative characterization of the uptake and the fate of the nanoparticles. This review mainly focuses on gold nanoparticles and discusses the various approaches to nanoparticle delivery, including surface chemical modifications and several methods used to facilitate cellular uptake and endosomal escape. We will also review the main detection methods and how their optimum use can inform about intracellular localization, efficiency of delivery, and integrity of the surface capping.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
金纳米颗粒在哺乳动物活细胞中的传递:一项重要综述。
功能纳米材料不仅作为潜在的药物递送载体或诊断工具,而且作为光学纳米材料,近年来引起了生物界的强烈兴趣。该领域出版物的爆炸式增长说明了这一点,在过去两年中有超过2000篇出版物(2000年以来有4000篇论文;来自ISI Web of Knowledge,“纳米粒子和细胞”点击)。在这一新颖的跨学科领域,这样的出版热潮导致了论文的标准不平等,部分原因是在一个团队中汇集化学、物理和生物学所需的专业知识是一项挑战。举个极端的例子,几篇发表在物理化学期刊上的论文声称纳米颗粒可以在细胞内传递,但在生物学家看来,这些细胞的图片显然是死亡的(因此是可渗透的)。为了使纳米材料在细胞中得到适当的应用,不仅要在健康细胞中实现有效的递送,而且要控制纳米材料在细胞内的可用性和命运。这仍然是一个开放的挑战,只有通过创新的给药方法,结合对纳米颗粒的吸收和命运的严格和定量的表征,才能解决这个问题。本综述主要关注金纳米颗粒,并讨论了纳米颗粒递送的各种方法,包括表面化学修饰和几种用于促进细胞摄取和内体逃逸的方法。我们还将回顾主要的检测方法,以及它们的最佳使用如何告知细胞内定位、递送效率和表面盖层的完整性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of nano-strengthening on the properties and microstructure of recycled concrete Upconversion Nanoparticles for Bioimaging Octa-ammonium POSS-conjugated single-walled carbon nanotubes as vehicles for targeted delivery of paclitaxel. LED-controlled tuning of ZnO nanowires' wettability for biosensing applications. Highly textured and transparent RF sputtered Eu2O3 doped ZnO films.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1