{"title":"ncRNALocate-EL: a multi-label ncRNA subcellular locality prediction model based on ensemble learning.","authors":"Tao Bai, Bin Liu","doi":"10.1093/bfgp/elad007","DOIUrl":null,"url":null,"abstract":"<p><p>Subcellular localizations of ncRNAs are associated with specific functions. Currently, an increasing number of biological researchers are focusing on computational approaches to identify subcellular localizations of ncRNAs. However, the performance of the existing computational methods is low and needs to be further studied. First, most prediction models are trained with outdated databases. Second, only a few predictors can identify multiple subcellular localizations simultaneously. In this work, we establish three human ncRNA subcellular datasets based on the latest RNALocate, including lncRNA, miRNA and snoRNA, and then we propose a novel multi-label classification model based on ensemble learning called ncRNALocate-EL to identify multi-label subcellular localizations of three ncRNAs. The results show that the ncRNALocate-EL outperforms previous methods. Our method achieved an average precision of 0.709,0.977 and 0.730 on three human ncRNA datasets. The web server of ncRNALocate-EL has been established, which can be accessed at https://bliulab.net/ncRNALocate-EL.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bfgp/elad007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Subcellular localizations of ncRNAs are associated with specific functions. Currently, an increasing number of biological researchers are focusing on computational approaches to identify subcellular localizations of ncRNAs. However, the performance of the existing computational methods is low and needs to be further studied. First, most prediction models are trained with outdated databases. Second, only a few predictors can identify multiple subcellular localizations simultaneously. In this work, we establish three human ncRNA subcellular datasets based on the latest RNALocate, including lncRNA, miRNA and snoRNA, and then we propose a novel multi-label classification model based on ensemble learning called ncRNALocate-EL to identify multi-label subcellular localizations of three ncRNAs. The results show that the ncRNALocate-EL outperforms previous methods. Our method achieved an average precision of 0.709,0.977 and 0.730 on three human ncRNA datasets. The web server of ncRNALocate-EL has been established, which can be accessed at https://bliulab.net/ncRNALocate-EL.