Mohammad Hashem Ryalat, Osama Dorgham, Sara Tedmori, Zainab Al-Rahamneh, Nijad Al-Najdawi, Seyedali Mirjalili
{"title":"Harris hawks optimization for COVID-19 diagnosis based on multi-threshold image segmentation.","authors":"Mohammad Hashem Ryalat, Osama Dorgham, Sara Tedmori, Zainab Al-Rahamneh, Nijad Al-Najdawi, Seyedali Mirjalili","doi":"10.1007/s00521-022-08078-4","DOIUrl":null,"url":null,"abstract":"<p><p>Digital image processing techniques and algorithms have become a great tool to support medical experts in identifying, studying, diagnosing certain diseases. Image segmentation methods are of the most widely used techniques in this area simplifying image representation and analysis. During the last few decades, many approaches have been proposed for image segmentation, among which multilevel thresholding methods have shown better results than most other methods. Traditional statistical approaches such as the Otsu and the Kapur methods are the standard benchmark algorithms for automatic image thresholding. Such algorithms provide optimal results, yet they suffer from high computational costs when multilevel thresholding is required, which is considered as an optimization matter. In this work, the Harris hawks optimization technique is combined with Otsu's method to effectively reduce the required computational cost while maintaining optimal outcomes. The proposed approach is tested on a publicly available imaging datasets, including chest images with clinical and genomic correlates, and represents a rural COVID-19-positive (COVID-19-AR) population. According to various performance measures, the proposed approach can achieve a substantial decrease in the computational cost and the time to converge while maintaining a level of quality highly competitive with the Otsu method for the same threshold values.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":"35 9","pages":"6855-6873"},"PeriodicalIF":4.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9714421/pdf/","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing & Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00521-022-08078-4","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 7
Abstract
Digital image processing techniques and algorithms have become a great tool to support medical experts in identifying, studying, diagnosing certain diseases. Image segmentation methods are of the most widely used techniques in this area simplifying image representation and analysis. During the last few decades, many approaches have been proposed for image segmentation, among which multilevel thresholding methods have shown better results than most other methods. Traditional statistical approaches such as the Otsu and the Kapur methods are the standard benchmark algorithms for automatic image thresholding. Such algorithms provide optimal results, yet they suffer from high computational costs when multilevel thresholding is required, which is considered as an optimization matter. In this work, the Harris hawks optimization technique is combined with Otsu's method to effectively reduce the required computational cost while maintaining optimal outcomes. The proposed approach is tested on a publicly available imaging datasets, including chest images with clinical and genomic correlates, and represents a rural COVID-19-positive (COVID-19-AR) population. According to various performance measures, the proposed approach can achieve a substantial decrease in the computational cost and the time to converge while maintaining a level of quality highly competitive with the Otsu method for the same threshold values.
期刊介绍:
Neural Computing & Applications is an international journal which publishes original research and other information in the field of practical applications of neural computing and related techniques such as genetic algorithms, fuzzy logic and neuro-fuzzy systems.
All items relevant to building practical systems are within its scope, including but not limited to:
-adaptive computing-
algorithms-
applicable neural networks theory-
applied statistics-
architectures-
artificial intelligence-
benchmarks-
case histories of innovative applications-
fuzzy logic-
genetic algorithms-
hardware implementations-
hybrid intelligent systems-
intelligent agents-
intelligent control systems-
intelligent diagnostics-
intelligent forecasting-
machine learning-
neural networks-
neuro-fuzzy systems-
pattern recognition-
performance measures-
self-learning systems-
software simulations-
supervised and unsupervised learning methods-
system engineering and integration.
Featured contributions fall into several categories: Original Articles, Review Articles, Book Reviews and Announcements.