The Biochemistry and Physiology of A Disintegrin and Metalloproteinases (ADAMs and ADAM-TSs) in Human Pathologies.

2区 医学 Q1 Biochemistry, Genetics and Molecular Biology Reviews of Physiology Biochemistry and Pharmacology Pub Date : 2023-01-01 DOI:10.1007/112_2021_67
Deepti Sharma, Nikhlesh K Singh
{"title":"The Biochemistry and Physiology of A Disintegrin and Metalloproteinases (ADAMs and ADAM-TSs) in Human Pathologies.","authors":"Deepti Sharma, Nikhlesh K Singh","doi":"10.1007/112_2021_67","DOIUrl":null,"url":null,"abstract":"<p><p>Metalloproteinases are a group of proteinases that plays a substantial role in extracellular matrix remodeling and its molecular signaling. Among these metalloproteinases, ADAMs (a disintegrin and metalloproteinases) and ADAM-TSs (ADAMs with thrombospondin domains) have emerged as highly efficient contributors mediating proteolytic processing of various signaling molecules. ADAMs are transmembrane metalloenzymes that facilitate the extracellular domain shedding of membrane-anchored proteins, cytokines, growth factors, ligands, and their receptors and therefore modulate their biological functions. ADAM-TSs are secretory, and soluble extracellular proteinases that mediate the cleavage of non-fibrillar extracellular matrix proteins. ADAMs and ADAM-TSs possess pro-domain, metalloproteinase, disintegrin, and cysteine-rich domains in common, but ADAM-TSs have characteristic thrombospondin motifs instead of the transmembrane domain. Most ADAMs and ADAM-TSs are activated by cleavage of pro-domain via pro-protein convertases at their N-terminus, hence directing them to various signaling pathways. In this article, we are discussing not only the structure and regulation of ADAMs and ADAM-TSs, but also the importance of these metalloproteinases in various human pathophysiological conditions like cardiovascular diseases, colorectal cancer, autoinflammatory diseases (sepsis/rheumatoid arthritis), Alzheimer's disease, proliferative retinopathies, and infectious diseases. Therefore, based on the emerging role of ADAMs and ADAM-TSs in various human pathologies, as summarized in this review, these metalloproteases can be considered as critical therapeutic targets and diagnostic biomarkers.</p>","PeriodicalId":21169,"journal":{"name":"Reviews of Physiology Biochemistry and Pharmacology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews of Physiology Biochemistry and Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/112_2021_67","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Metalloproteinases are a group of proteinases that plays a substantial role in extracellular matrix remodeling and its molecular signaling. Among these metalloproteinases, ADAMs (a disintegrin and metalloproteinases) and ADAM-TSs (ADAMs with thrombospondin domains) have emerged as highly efficient contributors mediating proteolytic processing of various signaling molecules. ADAMs are transmembrane metalloenzymes that facilitate the extracellular domain shedding of membrane-anchored proteins, cytokines, growth factors, ligands, and their receptors and therefore modulate their biological functions. ADAM-TSs are secretory, and soluble extracellular proteinases that mediate the cleavage of non-fibrillar extracellular matrix proteins. ADAMs and ADAM-TSs possess pro-domain, metalloproteinase, disintegrin, and cysteine-rich domains in common, but ADAM-TSs have characteristic thrombospondin motifs instead of the transmembrane domain. Most ADAMs and ADAM-TSs are activated by cleavage of pro-domain via pro-protein convertases at their N-terminus, hence directing them to various signaling pathways. In this article, we are discussing not only the structure and regulation of ADAMs and ADAM-TSs, but also the importance of these metalloproteinases in various human pathophysiological conditions like cardiovascular diseases, colorectal cancer, autoinflammatory diseases (sepsis/rheumatoid arthritis), Alzheimer's disease, proliferative retinopathies, and infectious diseases. Therefore, based on the emerging role of ADAMs and ADAM-TSs in various human pathologies, as summarized in this review, these metalloproteases can be considered as critical therapeutic targets and diagnostic biomarkers.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人类病理中的 A 型崩解酶和金属蛋白酶(ADAMs 和 ADAM-TSs)的生物化学和生理学》(The Biochemistry and Physiology of A Disintegrin and Metalloproteinases (ADAMs and ADAM-TSs) in Human Pathologies)。
金属蛋白酶是一组蛋白酶,在细胞外基质重塑及其分子信号转导中发挥着重要作用。在这些金属蛋白酶中,ADAMs(一种崩解素和金属蛋白酶)和 ADAM-TSs(具有血栓松蛋白结构域的 ADAMs)已成为介导各种信号分子蛋白分解处理的高效贡献者。ADAMs 是一种跨膜金属酶,可促进膜锚蛋白、细胞因子、生长因子、配体及其受体的胞外结构域脱落,从而调节其生物功能。ADAM-TSs 是分泌性和可溶性胞外蛋白酶,可介导非纤维状细胞外基质蛋白的裂解。ADAMs 和 ADAM-TSs 都具有原结构域、金属蛋白酶结构域、崩解素结构域和富含半胱氨酸结构域,但 ADAM-TSs 具有特征性的凝血酶原结构域,而不是跨膜结构域。大多数 ADAMs 和 ADAM-TSs 都是通过其 N 端的原蛋白转化酶裂解原结构域而激活的,从而将它们导向各种信号通路。在本文中,我们不仅要讨论 ADAMs 和 ADAM-TSs 的结构和调控,还要讨论这些金属蛋白酶在心血管疾病、结直肠癌、自身炎症性疾病(败血症/类风湿性关节炎)、阿尔茨海默病、增殖性视网膜病变和传染性疾病等各种人类病理生理状况中的重要性。因此,正如本综述所总结的那样,基于 ADAMs 和 ADAM-TSs 在各种人类病症中新出现的作用,这些金属蛋白酶可被视为关键的治疗靶点和诊断生物标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Reviews of Physiology Biochemistry and Pharmacology
Reviews of Physiology Biochemistry and Pharmacology 医学-生化与分子生物学
CiteScore
11.40
自引率
0.00%
发文量
5
审稿时长
>12 weeks
期刊介绍: The highly successful Reviews of Physiology, Biochemistry and Pharmacology continue to offer high-quality, in-depth reviews covering the full range of modern physiology, biochemistry and pharmacology. Leading researchers are specially invited to provide a complete understanding of the key topics in these archetypal multidisciplinary fields. In a form immediately useful to scientists, this periodical aims to filter, highlight and review the latest developments in these rapidly advancing fields.
期刊最新文献
Cell-to-Cell Crosstalk: A New Insight into Pulmonary Hypertension. Endosomal Acid-Base Homeostasis in Neurodegenerative Diseases. Endo-Lysosomal Cation Channels and Infectious Diseases. Golgi pH and Ion Homeostasis in Health and Disease. Autocrine, Paracrine, and Endocrine Signals That Can Alter Alveolar Macrophages Function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1