A Discursive Review of Recent Development and Patents on Glycerosomes.

IF 2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Recent Patents on Nanotechnology Pub Date : 2023-01-01 DOI:10.2174/1872210516666220328124450
Singh Ragini, Fatima Zeeshan, Srivastava Dipti, Awasthi Himani
{"title":"A Discursive Review of Recent Development and Patents on Glycerosomes.","authors":"Singh Ragini,&nbsp;Fatima Zeeshan,&nbsp;Srivastava Dipti,&nbsp;Awasthi Himani","doi":"10.2174/1872210516666220328124450","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>To achieve a target-based drug delivery with minimal side effects, novel drug delivery systems are being continuously explored. Vesicular systems are one such system that can ameliorate the bioavailability of the encapsulated drug by delivering the drug at the targeted site and can minimize the side effect.</p><p><strong>Objective: </strong>The objective of this patent review is to provide a vivid description of glycerosomes and their applications. Glycerosomes are sphere-shaped versatile vesicles consisting of one or more phospholipid bilayers similar to liposomes but contain a high concentration of glycerol, which modifies the liposome bilayer fluidity. Glycerosomes can encapsulate both hydrophobic and hydrophilic drugs, which makes them the promising vehicle in the field of drug delivery.</p><p><strong>Conclusion: </strong>Most of the glycerosome formulations prepared were targeted for topical delivery and in particular, a cutaneous route where they have shown promising results. These vesicles are biocompatible and due to the high glycerol concentration, they have improved spreadability and penetrability. It is therefore imperative to explore the other topical routes such as ocular, vaginal, nasal, and rectal for delivery of drugs.</p>","PeriodicalId":49324,"journal":{"name":"Recent Patents on Nanotechnology","volume":"17 3","pages":"183-189"},"PeriodicalIF":2.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Patents on Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2174/1872210516666220328124450","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: To achieve a target-based drug delivery with minimal side effects, novel drug delivery systems are being continuously explored. Vesicular systems are one such system that can ameliorate the bioavailability of the encapsulated drug by delivering the drug at the targeted site and can minimize the side effect.

Objective: The objective of this patent review is to provide a vivid description of glycerosomes and their applications. Glycerosomes are sphere-shaped versatile vesicles consisting of one or more phospholipid bilayers similar to liposomes but contain a high concentration of glycerol, which modifies the liposome bilayer fluidity. Glycerosomes can encapsulate both hydrophobic and hydrophilic drugs, which makes them the promising vehicle in the field of drug delivery.

Conclusion: Most of the glycerosome formulations prepared were targeted for topical delivery and in particular, a cutaneous route where they have shown promising results. These vesicles are biocompatible and due to the high glycerol concentration, they have improved spreadability and penetrability. It is therefore imperative to explore the other topical routes such as ocular, vaginal, nasal, and rectal for delivery of drugs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
甘油小体研究进展及专利综述。
背景:为了实现以靶点为基础的药物传递和最小的副作用,新的药物传递系统正在不断探索。囊泡系统就是这样一种系统,它可以通过在目标部位递送药物来改善被封装药物的生物利用度,并可以将副作用降到最低。目的:本专利审查的目的是提供一个生动的描述甘油小体及其应用。甘油小体是由一个或多个磷脂双分子层组成的球形多用途囊泡,类似于脂质体,但含有高浓度的甘油,其改变脂质体双分子层的流动性。甘油小体既可以包封疏水药物,也可以包封亲水药物,是一种很有前途的药物递送载体。结论:大多数制备的甘油体制剂是针对局部递送,特别是皮肤途径,他们已经显示出有希望的结果。这些囊泡具有生物相容性,由于高甘油浓度,它们具有更好的涂抹性和渗透性。因此,迫切需要探索其他局部途径,如眼、阴道、鼻腔和直肠给药。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Recent Patents on Nanotechnology
Recent Patents on Nanotechnology NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
4.70
自引率
10.00%
发文量
50
审稿时长
3 months
期刊介绍: Recent Patents on Nanotechnology publishes full-length/mini reviews and research articles that reflect or deal with studies in relation to a patent, application of reported patents in a study, discussion of comparison of results regarding application of a given patent, etc., and also guest edited thematic issues on recent patents in the field of nanotechnology. A selection of important and recent patents on nanotechnology is also included in the journal. The journal is essential reading for all researchers involved in nanotechnology.
期刊最新文献
Development of Stabilized and Aqueous Dissolvable Nanosuspension Encompassing BCS Class IV Drug via Optimization of Process and Formulation Variables. Research on Controllable Synthesis and Growth Mechanism of Sodium Vanadium Fluorophosphate Nanosheets. Progress on One-dimensional Vanadium Pentoxide-based Nanomaterials for Advanced Energy Storage ANSTEEL Research Institute of Vanadium & Titanium (Iron & Steel), China. Design Optimization and Evaluation of Patented Fast-Dissolving Oral Thin Film of Ambrisentan for the Treatment of Hypertension. From Solid to Fluid: Novel Approaches in Neuromorphic Engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1