Vagus nerve stimulation in the non-human primate: implantation methodology, characterization of nerve anatomy, target engagement and experimental applications.

Aaron J Suminski, Abigail Z Rajala, Rasmus M Birn, Ellie M Mueller, Margaret E Malone, Jared P Ness, Caitlyn Filla, Kevin Brunner, Alan B McMillan, Samuel O Poore, Justin C Williams, Dhanabalan Murali, Andrea Brzeczkowski, Samuel A Hurley, Aaron M Dingle, Weifeng Zeng, Wendell B Lake, Kip A Ludwig, Luis C Populin
{"title":"Vagus nerve stimulation in the non-human primate: implantation methodology, characterization of nerve anatomy, target engagement and experimental applications.","authors":"Aaron J Suminski, Abigail Z Rajala, Rasmus M Birn, Ellie M Mueller, Margaret E Malone, Jared P Ness, Caitlyn Filla, Kevin Brunner, Alan B McMillan, Samuel O Poore, Justin C Williams, Dhanabalan Murali, Andrea Brzeczkowski, Samuel A Hurley, Aaron M Dingle, Weifeng Zeng, Wendell B Lake, Kip A Ludwig, Luis C Populin","doi":"10.1186/s42234-023-00111-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Vagus nerve stimulation (VNS) is a FDA approved therapy regularly used to treat a variety of neurological disorders that impact the central nervous system (CNS) including epilepsy and stroke. Putatively, the therapeutic efficacy of VNS results from its action on neuromodulatory centers via projections of the vagus nerve to the solitary tract nucleus. Currently, there is not an established large animal model that facilitates detailed mechanistic studies exploring how VNS impacts the function of the CNS, especially during complex behaviors requiring motor action and decision making.</p><p><strong>Methods: </strong>We describe the anatomical organization, surgical methodology to implant VNS electrodes on the left gagus nerve and characterization of target engagement/neural interface properties in a non-human primate (NHP) model of VNS that permits chronic stimulation over long periods of time. Furthermore, we describe the results of pilot experiments in a small number of NHPs to demonstrate how this preparation might be used in an animal model capable of performing complex motor and decision making tasks.</p><p><strong>Results: </strong>VNS electrode impedance remained constant over months suggesting a stable interface. VNS elicited robust activation of the vagus nerve which resulted in decreases of respiration rate and/or partial pressure of carbon dioxide in expired air, but not changes in heart rate in both awake and anesthetized NHPs.</p><p><strong>Conclusions: </strong>We anticipate that this preparation will be very useful to study the mechanisms underlying the effects of VNS for the treatment of conditions such as epilepsy and depression, for which VNS is extensively used, as well as for the study of the neurobiological basis underlying higher order functions such as learning and memory.</p>","PeriodicalId":72363,"journal":{"name":"Bioelectronic medicine","volume":"9 1","pages":"9"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10148417/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectronic medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42234-023-00111-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Vagus nerve stimulation (VNS) is a FDA approved therapy regularly used to treat a variety of neurological disorders that impact the central nervous system (CNS) including epilepsy and stroke. Putatively, the therapeutic efficacy of VNS results from its action on neuromodulatory centers via projections of the vagus nerve to the solitary tract nucleus. Currently, there is not an established large animal model that facilitates detailed mechanistic studies exploring how VNS impacts the function of the CNS, especially during complex behaviors requiring motor action and decision making.

Methods: We describe the anatomical organization, surgical methodology to implant VNS electrodes on the left gagus nerve and characterization of target engagement/neural interface properties in a non-human primate (NHP) model of VNS that permits chronic stimulation over long periods of time. Furthermore, we describe the results of pilot experiments in a small number of NHPs to demonstrate how this preparation might be used in an animal model capable of performing complex motor and decision making tasks.

Results: VNS electrode impedance remained constant over months suggesting a stable interface. VNS elicited robust activation of the vagus nerve which resulted in decreases of respiration rate and/or partial pressure of carbon dioxide in expired air, but not changes in heart rate in both awake and anesthetized NHPs.

Conclusions: We anticipate that this preparation will be very useful to study the mechanisms underlying the effects of VNS for the treatment of conditions such as epilepsy and depression, for which VNS is extensively used, as well as for the study of the neurobiological basis underlying higher order functions such as learning and memory.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非人灵长类动物的迷走神经刺激:植入方法、神经解剖特征、目标参与和实验应用。
背景:迷走神经刺激疗法(Vagus nerve stimulation,VNS)是美国食品及药物管理局(FDA)批准的一种疗法,经常用于治疗影响中枢神经系统(CNS)的各种神经系统疾病,包括癫痫和中风。据推测,VNS 的疗效来自于它通过迷走神经投射到孤束核对神经调节中枢的作用。目前,还没有一种成熟的大型动物模型可以进行详细的机理研究,探索 VNS 如何影响中枢神经系统的功能,尤其是在需要运动和决策的复杂行为中:我们描述了在非人灵长类(NHP)VNS 模型中的解剖结构、在左侧咽喉神经上植入 VNS 电极的手术方法以及目标啮合/神经接口特性的特征,该模型允许长时间的慢性刺激。此外,我们还描述了在少量 NHP 身上进行的试点实验结果,以证明如何将这种制备方法用于能够执行复杂运动和决策任务的动物模型:VNS 电极阻抗在数月内保持稳定,表明接口稳定。VNS 引起迷走神经的强烈激活,导致呼吸频率和/或呼出空气中二氧化碳分压下降,但清醒和麻醉状态下的 NHPs 心率均无变化:我们预计,这种制备方法将非常有助于研究迷走神经系统治疗癫痫和抑郁症等疾病(迷走神经系统已被广泛用于这些疾病的治疗)的作用机制,以及研究学习和记忆等高阶功能的神经生物学基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.90
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊最新文献
In vivo electrophysiology recordings and computational modeling can predict octopus arm movement. Advice for translational neuroscience: move deliberately and build things. Advancing cancer therapy with custom-built alternating electric field devices. Next generation bioelectronic medicine: making the case for non-invasive closed-loop autonomic neuromodulation. Exploring the efficacy of Transcutaneous Auricular Vagus nerve stimulation (taVNS) in modulating local and systemic inflammation in experimental models of colitis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1